Lorentz Group in Ray and Polarization Optics

S. Başkal, Y. S. Kim
{"title":"Lorentz Group in Ray and Polarization Optics","authors":"S. Başkal, Y. S. Kim","doi":"10.1201/b14298-14","DOIUrl":null,"url":null,"abstract":"While the Lorentz group serves as the basic language for Einstein's special theory of relativity, it is turning out to be the basic mathematical instrument in optical sciences, particularly in ray optics and polarization optics. The beam transfer matrix, commonly called the $ABCD$ matrix, is shown to be a two-by-two representation of the Lorentz group applicable to the three-dimensional space-time consisting of two space and one time dimensions. The Jones matrix applicable to polarization states turns out to be the two-by-two representations of the Lorentz group applicable to the four-dimensional space-time consisting of three space and one time dimensions. The four-by-four Mueller matrix applicable to the Stokes parameters as well as the Poincar\\'e sphere are both shown to be the representations of the Lorentz group.","PeriodicalId":402717,"journal":{"name":"Mathematical Optics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b14298-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While the Lorentz group serves as the basic language for Einstein's special theory of relativity, it is turning out to be the basic mathematical instrument in optical sciences, particularly in ray optics and polarization optics. The beam transfer matrix, commonly called the $ABCD$ matrix, is shown to be a two-by-two representation of the Lorentz group applicable to the three-dimensional space-time consisting of two space and one time dimensions. The Jones matrix applicable to polarization states turns out to be the two-by-two representations of the Lorentz group applicable to the four-dimensional space-time consisting of three space and one time dimensions. The four-by-four Mueller matrix applicable to the Stokes parameters as well as the Poincar\'e sphere are both shown to be the representations of the Lorentz group.
射线和偏振光学中的洛伦兹群
虽然洛伦兹群是爱因斯坦狭义相对论的基本语言,但它正在成为光学科学,特别是射线光学和偏振光学的基本数学工具。光束传输矩阵,通常称为ABCD矩阵,被证明是适用于由两个空间和一个时间维度组成的三维时空的洛伦兹群的二乘二表示。适用于极化态的琼斯矩阵是适用于由三维空间和一维时间组成的四维时空的洛伦兹群的二乘二表示。适用于Stokes参数和庞加莱球的4 × 4 Mueller矩阵都被证明是洛伦兹群的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信