Algorithms for node disjoint paths in incomplete star networks

Q. Gu, S. Peng
{"title":"Algorithms for node disjoint paths in incomplete star networks","authors":"Q. Gu, S. Peng","doi":"10.1109/ICPADS.1994.590312","DOIUrl":null,"url":null,"abstract":"We give efficient algorithms for node disjoint path problems in incomplete star graphs which are defined in this paper to reduce the large gaps in the size of systems based on star graph topologies. Four disjoint path paradigms in incomplete star graphs are discussed: (1) disjoint paths between a pair of nodes s and t, (2) disjoint paths from a node s to a set T of nodes, (3) disjoint paths from a set S of nodes to a set T of nodes, and (4) disjoint paths between node pairs (s/sub i/,t/sub i/). We give algorithms which can find the maximum number of disjoint paths for these paradigms in optimal time. For an n-dimensional incomplete star graph G/sub n,m/, the length of the disjoint paths constructed by our algorithms is at most d(G/sub n,m/)+c, where d(G/sub n,m/) is the diameter of G and c is a small constant. This paper also shows that the k-wide-diameter d/sub n-2//sup W/(G/sub m,n/), k-Rabin-diameter d/sub n-2//sup R/(G/sub m,n/), k-set-diameter d/sub n-2//sup S/(G/sub m,n/), and k-pair-diameter d/sub n-2//sup P/(G/sub m,n/) of G/sub n,m/ are at d(G/sub n,m/)+c.","PeriodicalId":154429,"journal":{"name":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1994.590312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We give efficient algorithms for node disjoint path problems in incomplete star graphs which are defined in this paper to reduce the large gaps in the size of systems based on star graph topologies. Four disjoint path paradigms in incomplete star graphs are discussed: (1) disjoint paths between a pair of nodes s and t, (2) disjoint paths from a node s to a set T of nodes, (3) disjoint paths from a set S of nodes to a set T of nodes, and (4) disjoint paths between node pairs (s/sub i/,t/sub i/). We give algorithms which can find the maximum number of disjoint paths for these paradigms in optimal time. For an n-dimensional incomplete star graph G/sub n,m/, the length of the disjoint paths constructed by our algorithms is at most d(G/sub n,m/)+c, where d(G/sub n,m/) is the diameter of G and c is a small constant. This paper also shows that the k-wide-diameter d/sub n-2//sup W/(G/sub m,n/), k-Rabin-diameter d/sub n-2//sup R/(G/sub m,n/), k-set-diameter d/sub n-2//sup S/(G/sub m,n/), and k-pair-diameter d/sub n-2//sup P/(G/sub m,n/) of G/sub n,m/ are at d(G/sub n,m/)+c.
不完全星型网络中节点不相交路径的算法
本文提出了不完备星图中节点不相交路径问题的有效算法,以减少基于星图拓扑的系统在规模上的巨大差距。讨论了不完备星图中的四种不相交路径范式:(1)一对节点s与t之间的不相交路径,(2)一个节点s到一个节点集t之间的不相交路径,(3)一个节点集s到一个节点集t之间的不相交路径,以及(4)节点对(s/sub i/,t/sub i/)之间的不相交路径。我们给出了在最优时间内找到这些范式的最大不相交路径数的算法。对于n维不完备星图G/下标n,m/,我们的算法构造的不相交路径的长度最多为d(G/下标n,m/)+c,其中d(G/下标n,m/)是G的直径,c是一个小常数。本文还证明了G/sub - n,m/的k-wide-diameter d/sub - n-2/ sup W/(G/sub m,n/)、k-Rabin-diameter d/sub - n-2/ sup R/(G/sub m,n/)、k-set-diameter d/sub - n-2/ sup S/(G/sub m,n/)、k-pair-diameter d/sub - n-2/ sup P/(G/sub m,n/)均为d(G/sub n,m/)+c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信