Physical Electronics Underlying Junction Transistor Characteristics

W. G. Dow
{"title":"Physical Electronics Underlying Junction Transistor Characteristics","authors":"W. G. Dow","doi":"10.1109/TE.1960.4322152","DOIUrl":null,"url":null,"abstract":"In most transistors which are useful to engineering, densities of electrons and holes are low enough so that random energies have the classical Maxwell-Boltzmann distribution. Also, the customary large ratios of majority-to-minority carrier densities result in majority-carrier flow occurring in response to electric gradients, and minority-carrier flow by diffusion due to concentration gradients. Steps using these principles to derive junction transistor volt-ampere characteristic equations are: 1) interface contact potential determination, 2) expression of emitter and collector currents in terms of random-motion interface penetration, 3) boundary-value solution of the diffusion-flow differential equation, to give minority-carrier density distributions, 4) expression of currents in terms of at-interface density distribution gradients, 5) elimination of at-interface minority-carrier densities between 2) and 4), giving the Ebers and Moll volt-ampere equations. These equations show how base thickness, diffusion lengths, and relative majority carrier densities in emitter, base, and collector affect the characteristics. The residual collector current is found to be a measure of electron-hole pair generation. The relation of this current to surface energy states, and to the associated double layer of charge at and near the surface, is discussed.","PeriodicalId":175003,"journal":{"name":"Ire Transactions on Education","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1960-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ire Transactions on Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TE.1960.4322152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In most transistors which are useful to engineering, densities of electrons and holes are low enough so that random energies have the classical Maxwell-Boltzmann distribution. Also, the customary large ratios of majority-to-minority carrier densities result in majority-carrier flow occurring in response to electric gradients, and minority-carrier flow by diffusion due to concentration gradients. Steps using these principles to derive junction transistor volt-ampere characteristic equations are: 1) interface contact potential determination, 2) expression of emitter and collector currents in terms of random-motion interface penetration, 3) boundary-value solution of the diffusion-flow differential equation, to give minority-carrier density distributions, 4) expression of currents in terms of at-interface density distribution gradients, 5) elimination of at-interface minority-carrier densities between 2) and 4), giving the Ebers and Moll volt-ampere equations. These equations show how base thickness, diffusion lengths, and relative majority carrier densities in emitter, base, and collector affect the characteristics. The residual collector current is found to be a measure of electron-hole pair generation. The relation of this current to surface energy states, and to the associated double layer of charge at and near the surface, is discussed.
物理电子学底层结晶体管特性
在大多数对工程有用的晶体管中,电子和空穴的密度足够低,以至于随机能量具有经典的麦克斯韦-玻尔兹曼分布。此外,通常情况下,多数与少数载流子密度的大比例导致多数载流子流动响应于电梯度,而少数载流子流动由于浓度梯度而扩散。利用这些原理推导结型晶体管伏安特性方程的步骤如下:1)界面接触电位的确定,2)用随机运动界面穿透量表示发射极和集电极电流,3)扩散流动微分方程的边值解,给出少数载流子密度分布,4)用界面密度分布梯度表示电流,5)消去2)和4)之间的界面少数载流子密度,给出Ebers和Moll伏安方程。这些方程显示了基极厚度、扩散长度和发射极、基极和集电极中相对多数载流子密度如何影响特性。发现剩余集电极电流是电子-空穴对产生的量度。讨论了该电流与表面能态的关系,以及与表面和表面附近的双电荷层的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信