Dynamical System-based Imitation Learning for Visual Servoing using the Large Projection Formulation

Antonio Paolillo, P. Giordano, Matteo Saveriano
{"title":"Dynamical System-based Imitation Learning for Visual Servoing using the Large Projection Formulation","authors":"Antonio Paolillo, P. Giordano, Matteo Saveriano","doi":"10.1109/ICRA48891.2023.10160935","DOIUrl":null,"url":null,"abstract":"Nowadays ubiquitous robots must be adaptive and easy to use. To this end, dynamical system-based imitation learning plays an important role. In fact, it allows to realize stable and complex robotic tasks without explicitly coding them, thus facilitating the robot use. However, the adaptation capabilities of dynamical systems have not been fully exploited due to the lack of closed-loop implementations making use of visual feedback. In this regard, the integration of visual information allows higher flexibility to cope with environmental changes. This work presents a dynamical system-based imitation learning for visual servoing, based on the large projection task priority formulation. The proposed scheme enables complex and stable visual tasks, as demonstrated by a simulation analysis and experiments with a robotic manipulator.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays ubiquitous robots must be adaptive and easy to use. To this end, dynamical system-based imitation learning plays an important role. In fact, it allows to realize stable and complex robotic tasks without explicitly coding them, thus facilitating the robot use. However, the adaptation capabilities of dynamical systems have not been fully exploited due to the lack of closed-loop implementations making use of visual feedback. In this regard, the integration of visual information allows higher flexibility to cope with environmental changes. This work presents a dynamical system-based imitation learning for visual servoing, based on the large projection task priority formulation. The proposed scheme enables complex and stable visual tasks, as demonstrated by a simulation analysis and experiments with a robotic manipulator.
基于动力系统的大投影公式视觉伺服模仿学习
如今,无处不在的机器人必须具有适应性和易用性。为此,基于动态系统的模仿学习起着重要的作用。实际上,它允许实现稳定而复杂的机器人任务,而无需显式地对其进行编码,从而方便机器人的使用。然而,由于缺乏利用视觉反馈的闭环实现,动力系统的自适应能力尚未得到充分利用。在这方面,视觉信息的整合使得应对环境变化的灵活性更高。本文提出了一种基于动态系统的视觉伺服模仿学习方法,该方法基于大投影任务优先级公式。仿真分析和机械臂实验表明,该方案能够实现复杂而稳定的视觉任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信