Monte Carlo techniques in code optimization

MICRO 15 Pub Date : 1982-10-05 DOI:10.1145/1014194.800944
D. Jacobs, J. Prins, Peter H. Siegel, Kenneth M. Wilson
{"title":"Monte Carlo techniques in code optimization","authors":"D. Jacobs, J. Prins, Peter H. Siegel, Kenneth M. Wilson","doi":"10.1145/1014194.800944","DOIUrl":null,"url":null,"abstract":"Effective optimization of FPS Array Processor assembly language (APAL) is difficult. Instructions must be rearranged and consolidated to minimize periods during which the functional units remain idle or perform unnecessary tasks. Register conflicts and branches cause complications. Deterministic algorithms to arrange instructions traditionally use complex heuristics which are tailored to specific inputs. A non-deterministic approach can be simpler and effective on a large class of inputs. This is a progress report on the “Monte Carlo” optimizer under construction at Cornell University by the authors. This optimizer randomly modifies the text of an APAL program without changing its meaning. Modifications which improve the program are favored. A set of six elementary transformations are the basis for modifications.","PeriodicalId":134922,"journal":{"name":"MICRO 15","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MICRO 15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1014194.800944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Effective optimization of FPS Array Processor assembly language (APAL) is difficult. Instructions must be rearranged and consolidated to minimize periods during which the functional units remain idle or perform unnecessary tasks. Register conflicts and branches cause complications. Deterministic algorithms to arrange instructions traditionally use complex heuristics which are tailored to specific inputs. A non-deterministic approach can be simpler and effective on a large class of inputs. This is a progress report on the “Monte Carlo” optimizer under construction at Cornell University by the authors. This optimizer randomly modifies the text of an APAL program without changing its meaning. Modifications which improve the program are favored. A set of six elementary transformations are the basis for modifications.
蒙特卡罗技术在代码优化
FPS阵列处理器汇编语言(APAL)的有效优化是一个难点。指令必须重新排列和整合,以尽量减少功能单元闲置或执行不必要任务的时间。注册冲突和分支会导致复杂性。排序指令的确定性算法传统上使用复杂的启发式算法,针对特定的输入进行定制。对于大量输入,非确定性方法可能更简单、更有效。这是作者在康奈尔大学正在建设的“蒙特卡罗”优化器的进度报告。这个优化器随机修改APAL程序的文本而不改变其含义。改进程序的修改受到欢迎。一组六个基本变换是修改的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信