Local Behavior Analysis for Trajectory Classification Using Graph Embedding

Rajkumar Saini, Pradeep Kumar, S. Dutta, P. Roy, U. Pal
{"title":"Local Behavior Analysis for Trajectory Classification Using Graph Embedding","authors":"Rajkumar Saini, Pradeep Kumar, S. Dutta, P. Roy, U. Pal","doi":"10.1109/ACPR.2017.27","DOIUrl":null,"url":null,"abstract":"Understanding motion patterns is of great importance to analyze the behavior of objects in the vigilance area. Grouping the motion patterns into clusters in such a way that similar motion patterns lie in same cluster and the inter-cluster variance is maximized. Variation in the duration of trajectory patterns in terms of time or number of points in them (even in the trajectories from same cluster) make it more difficult to correctly classify in respective clusters as a bijective mapping is not possible in such cases. In this paper, we have formulated the trajectory classification problem into graph based similarity problem using Douglas-Peucker (DP) algorithm and complete bipartite graphs. Local behavior of objects has been analyzed using their motion segments and Dynamic Time Warping (DTW) has been used for finding similarity among motion trajectories. Class-wise global and local costs have been computed using DTW and their fusion has been done using Particle Swarm Optimization (PSO) to improve the classification rate. Experiments have been performed using two public trajectory datasets, namely T15 and LabOmni. The proposed method yields encouraging results and outperforms the state of the art techniques.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Understanding motion patterns is of great importance to analyze the behavior of objects in the vigilance area. Grouping the motion patterns into clusters in such a way that similar motion patterns lie in same cluster and the inter-cluster variance is maximized. Variation in the duration of trajectory patterns in terms of time or number of points in them (even in the trajectories from same cluster) make it more difficult to correctly classify in respective clusters as a bijective mapping is not possible in such cases. In this paper, we have formulated the trajectory classification problem into graph based similarity problem using Douglas-Peucker (DP) algorithm and complete bipartite graphs. Local behavior of objects has been analyzed using their motion segments and Dynamic Time Warping (DTW) has been used for finding similarity among motion trajectories. Class-wise global and local costs have been computed using DTW and their fusion has been done using Particle Swarm Optimization (PSO) to improve the classification rate. Experiments have been performed using two public trajectory datasets, namely T15 and LabOmni. The proposed method yields encouraging results and outperforms the state of the art techniques.
基于图嵌入的轨迹分类局部行为分析
了解运动模式对于分析警觉性区域中物体的行为具有重要意义。将运动模式分组成簇,使相似的运动模式处于同一簇中,使簇间方差最大化。轨迹模式在时间或点数方面的持续时间变化(即使在同一簇的轨迹中)使得在各自的簇中正确分类变得更加困难,因为在这种情况下不可能进行双向映射。本文利用Douglas-Peucker (DP)算法和完全二部图将轨迹分类问题转化为基于图的相似问题。利用物体的运动片段分析了物体的局部行为,并利用动态时间翘曲(DTW)来寻找运动轨迹之间的相似性。利用DTW计算分类的全局代价和局部代价,并利用粒子群算法(PSO)进行融合,提高分类率。实验使用了两个公共轨迹数据集,即T15和LabOmni。所提出的方法产生了令人鼓舞的结果,并且优于当前技术的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信