Volatility Modeling and Forecasting of the Egyptian: Stock Market Index using ARCH Models

Said T. Ebeid, Gamal B. A. Bedeir Alkholi
{"title":"Volatility Modeling and Forecasting of the Egyptian: Stock Market Index using ARCH Models","authors":"Said T. Ebeid, Gamal B. A. Bedeir Alkholi","doi":"10.2139/ssrn.631951","DOIUrl":null,"url":null,"abstract":"This paper estimates and evaluates the forecasting performance of four alternative ARCH- type Models for predicting stock price index volatility using daily Egyptian data. The competing Models include GARCH, EGARCH, GJR and APAPCH used with four different distributions, Gaussian normal, Student-t, Generalized Error Distribution and skewed Student–t. The estimation results show that the forecasting performance of asymmetric GARCH Models (GJR and APARCH),especially when fat-tailed asymmetric densities are taken into account in the conditional volatility, is better than symmetric GARCH. Moreover, it is found that the APAPCH (1,1) Model Provides the best out-of-sample forecasts among all the candidate Models and the skewed Student-t density is more appropriate for modeling the Egyptian stock market index volatility.","PeriodicalId":198417,"journal":{"name":"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Stock Market Decision-Making (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.631951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper estimates and evaluates the forecasting performance of four alternative ARCH- type Models for predicting stock price index volatility using daily Egyptian data. The competing Models include GARCH, EGARCH, GJR and APAPCH used with four different distributions, Gaussian normal, Student-t, Generalized Error Distribution and skewed Student–t. The estimation results show that the forecasting performance of asymmetric GARCH Models (GJR and APARCH),especially when fat-tailed asymmetric densities are taken into account in the conditional volatility, is better than symmetric GARCH. Moreover, it is found that the APAPCH (1,1) Model Provides the best out-of-sample forecasts among all the candidate Models and the skewed Student-t density is more appropriate for modeling the Egyptian stock market index volatility.
利用ARCH模型对埃及股市指数的波动率建模与预测
本文利用埃及的日常数据估计和评价了四种可供选择的ARCH型模型预测股价指数波动的预测性能。竞争模型包括GARCH、EGARCH、GJR和APAPCH,使用高斯正态分布、Student-t、广义误差分布和偏态Student-t四种不同的分布。估计结果表明,非对称GARCH模型(GJR和APARCH)的预测性能优于对称GARCH模型,特别是在条件波动率中考虑了肥尾非对称密度时。此外,我们发现APAPCH(1,1)模型在所有候选模型中提供了最好的样本外预测,偏态的Student-t密度更适合于埃及股市指数波动的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信