Application interference analysis: Towards energy-efficient workload management on heterogeneous micro-server architectures

Markus Hähnel, Frehiwot Melak Arega, W. Dargie, R. Khasanov, J. Castrillón
{"title":"Application interference analysis: Towards energy-efficient workload management on heterogeneous micro-server architectures","authors":"Markus Hähnel, Frehiwot Melak Arega, W. Dargie, R. Khasanov, J. Castrillón","doi":"10.1109/INFCOMW.2017.8116415","DOIUrl":null,"url":null,"abstract":"The ever increasing demand for Internet traffic, storage and processing requires an ever increasing amount of hardware resources. In addition to this, infrastructure providers over-provision system architectures to serve users at peak times without performance delays. Over-provisioning leads to underutilization and thus to unnecessary power consumption. Therefore, there is a need for workload management strategies to map and schedule different services simultaneously in an energy-efficient manner without compromising performance, specially for heterogeneous micro-server architectures. This requires statistical models of how services interfere with each other, thereby affecting both performance and energy consumption. Indeed, the performance-energy behavior when mixing workloads is not well understood. This paper presents an interference analysis for heterogeneous workloads (i.e., CPU- and memory-intensive) on a big.LITTLE MPSoC architecture. We employ state-of-the-art tools to generate multiple single-application mappings and characterize the interference among two different services. We observed a performance degradation factor between 1.1 and 2.5. For some configurations, executing on different clusters resulted in reduced energy consumption with no performance penalty. This kind of detailed analysis give us first insights towards more general models for future workload management systems.","PeriodicalId":306731,"journal":{"name":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2017.8116415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ever increasing demand for Internet traffic, storage and processing requires an ever increasing amount of hardware resources. In addition to this, infrastructure providers over-provision system architectures to serve users at peak times without performance delays. Over-provisioning leads to underutilization and thus to unnecessary power consumption. Therefore, there is a need for workload management strategies to map and schedule different services simultaneously in an energy-efficient manner without compromising performance, specially for heterogeneous micro-server architectures. This requires statistical models of how services interfere with each other, thereby affecting both performance and energy consumption. Indeed, the performance-energy behavior when mixing workloads is not well understood. This paper presents an interference analysis for heterogeneous workloads (i.e., CPU- and memory-intensive) on a big.LITTLE MPSoC architecture. We employ state-of-the-art tools to generate multiple single-application mappings and characterize the interference among two different services. We observed a performance degradation factor between 1.1 and 2.5. For some configurations, executing on different clusters resulted in reduced energy consumption with no performance penalty. This kind of detailed analysis give us first insights towards more general models for future workload management systems.
应用程序干扰分析:在异构微服务器架构上实现高效的工作负载管理
对互联网流量、存储和处理不断增长的需求需要不断增加的硬件资源。除此之外,基础设施提供商过度配置系统架构,以便在高峰时间为用户提供服务而不会出现性能延迟。过度供应会导致利用率不足,从而导致不必要的电力消耗。因此,需要工作负载管理策略,以便在不影响性能的情况下,以节能的方式同时映射和调度不同的服务,特别是对于异构微服务器体系结构。这就需要建立服务如何相互干扰的统计模型,从而影响性能和能耗。实际上,混合工作负载时的性能-能量行为还没有得到很好的理解。本文提出了在大数据处理系统上异构工作负载(即CPU和内存密集型工作负载)的干扰分析。小MPSoC架构。我们使用最先进的工具来生成多个单一应用程序映射,并描述两个不同服务之间的干扰。我们观察到性能下降系数在1.1到2.5之间。对于某些配置,在不同的集群上执行可以减少能耗,而不会造成性能损失。这种详细的分析使我们对未来工作负载管理系统的更通用模型有了初步的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信