Automatic construction of anomaly detectors from graphical models

Erik M. Ferragut, David M. Darmon, Craig A. Shue, Stephen Kelley
{"title":"Automatic construction of anomaly detectors from graphical models","authors":"Erik M. Ferragut, David M. Darmon, Craig A. Shue, Stephen Kelley","doi":"10.1109/CICYBS.2011.5949386","DOIUrl":null,"url":null,"abstract":"Detection of rare or previously unseen attacks in cyber security presents a central challenge: how does one search for a sufficiently wide variety of types of anomalies and yet allow the process to scale to increasingly complex data? In particular, creating each anomaly detector manually and training each one separately presents untenable strains on both human and computer resources. In this paper we propose a systematic method for constructing a potentially very large number of complementary anomaly detectors from a single probabilistic model of the data. Only one model needs to be trained, but numerous detectors can then be implemented. This approach promises to scale better than manual methods to the complex heterogeneity of real-life data. As an example, we develop a Latent Dirichlet Allocation probability model of TCP connections entering Oak Ridge National Laboratory. We show that several detectors can be automatically constructed from the model and will provide anomaly detection at flow, sub-flow, and host (both server and client) levels. This demonstrates how the fundamental connection between anomaly detection and probabilistic modeling can be exploited to develop more robust operational solutions.","PeriodicalId":436263,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICYBS.2011.5949386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Detection of rare or previously unseen attacks in cyber security presents a central challenge: how does one search for a sufficiently wide variety of types of anomalies and yet allow the process to scale to increasingly complex data? In particular, creating each anomaly detector manually and training each one separately presents untenable strains on both human and computer resources. In this paper we propose a systematic method for constructing a potentially very large number of complementary anomaly detectors from a single probabilistic model of the data. Only one model needs to be trained, but numerous detectors can then be implemented. This approach promises to scale better than manual methods to the complex heterogeneity of real-life data. As an example, we develop a Latent Dirichlet Allocation probability model of TCP connections entering Oak Ridge National Laboratory. We show that several detectors can be automatically constructed from the model and will provide anomaly detection at flow, sub-flow, and host (both server and client) levels. This demonstrates how the fundamental connection between anomaly detection and probabilistic modeling can be exploited to develop more robust operational solutions.
基于图形模型的异常检测器自动构建
在网络安全领域,检测罕见的或前所未见的攻击提出了一个核心挑战:如何搜索足够广泛的异常类型,同时允许该过程扩展到日益复杂的数据?特别是,手动创建每个异常检测器并单独训练每个异常检测器会对人力资源和计算机资源造成不可承受的压力。在本文中,我们提出了一个系统的方法来构建一个潜在的非常大量的互补异常探测器从单一的概率模型的数据。只需要训练一个模型,但随后可以实现多个检测器。这种方法有望比手工方法更好地扩展到现实数据的复杂异质性。作为一个例子,我们开发了一个进入橡树岭国家实验室的TCP连接的潜在狄利克雷分配概率模型。我们展示了可以从模型自动构造几个检测器,并将在流、子流和主机(服务器和客户端)级别提供异常检测。这演示了如何利用异常检测和概率建模之间的基本联系来开发更健壮的操作解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信