Han Zhang, Oren Salzman, Ariel Felner, T. K. S. Kumar, Shawn Skyler, Carlos Hernández Ulloa, Sven Koenig
{"title":"Towards Effective Multi-Valued Heuristics for Bi-objective Shortest-Path Algorithms via Differential Heuristics","authors":"Han Zhang, Oren Salzman, Ariel Felner, T. K. S. Kumar, Shawn Skyler, Carlos Hernández Ulloa, Sven Koenig","doi":"10.1609/socs.v16i1.27288","DOIUrl":null,"url":null,"abstract":"In bi-objective graph search, each edge is annotated with a cost pair, where each cost corresponds to an objective to optimize. We are interested in finding all undominated paths from a given start state to a given goal state (called the Pareto front). Almost all existing works of bi-objective search use single-valued heuristics, which use one number for each objective, to estimate the cost between any given state and the goal state. However, single-valued heuristics cannot reflect the trade-offs between the two costs. On the other hand, multi-valued heuristics use a set of pairs to estimate the Pareto front between any given state and the goal state and are more informed than single-valued heuristics. However, they are rarely studied and have yet to be investigated in explicit state spaces by any existing work. In this paper, we are interested in using multi-valued heuristics to improve bi-objective search algorithms in explicit state spaces. More specifically, we generalize Differential Heuristics (DHs), a class of memory-based heuristics for single-objective search, to bi-objective search, resulting in Bi-objective Differential Heuristics (BO-DHs). We propose several techniques to reduce the memory usage and computational overhead of BO-DHs significantly. Our experimental results show that, with suggested improvement and tuned parameters, BO-DHs can reduce the node expansion and runtime of a bi-objective search algorithm by up to an order of magnitude, paving the way for more effective multi-valued heuristics.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In bi-objective graph search, each edge is annotated with a cost pair, where each cost corresponds to an objective to optimize. We are interested in finding all undominated paths from a given start state to a given goal state (called the Pareto front). Almost all existing works of bi-objective search use single-valued heuristics, which use one number for each objective, to estimate the cost between any given state and the goal state. However, single-valued heuristics cannot reflect the trade-offs between the two costs. On the other hand, multi-valued heuristics use a set of pairs to estimate the Pareto front between any given state and the goal state and are more informed than single-valued heuristics. However, they are rarely studied and have yet to be investigated in explicit state spaces by any existing work. In this paper, we are interested in using multi-valued heuristics to improve bi-objective search algorithms in explicit state spaces. More specifically, we generalize Differential Heuristics (DHs), a class of memory-based heuristics for single-objective search, to bi-objective search, resulting in Bi-objective Differential Heuristics (BO-DHs). We propose several techniques to reduce the memory usage and computational overhead of BO-DHs significantly. Our experimental results show that, with suggested improvement and tuned parameters, BO-DHs can reduce the node expansion and runtime of a bi-objective search algorithm by up to an order of magnitude, paving the way for more effective multi-valued heuristics.