Yunong Zhang, Ying Fang, Bolin Liao, Tianjian Qiao, Hongzhou Tan
{"title":"New DTZNN model for future minimization with cube steady-state error pattern using Taylor finite-difference formula","authors":"Yunong Zhang, Ying Fang, Bolin Liao, Tianjian Qiao, Hongzhou Tan","doi":"10.1109/ICICIP.2015.7388156","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete-time Zhang neural network (DTZNN) model, discretized from continuous-time Zhang neural network, is proposed and investigated for performing the online future minimization (OFM). In order to approximate more accurately the 1st-order derivative in computation and discretize more effectively the continuous-time Zhang neural network, a new Taylor-type numerical differentiation formula, together with the optimal sampling-gap rule, is presented and utilized to obtain the Taylor-type DTZNN model. For comparison, Euler-type DTZNN model and Newton iteration, with an interesting link being found, are also presented. Moreover, theoretical results of stability and convergence are presented, which show that the steady-state residual errors of the presented Taylor-type DTZNN model, Euler-type DTZNN model and Newton iteration have a pattern of 0(t3), 0(t2) and 0(t), respectively, with t denoting the sampling gap. Numerical experimental results further substantiate the effectiveness and advantages of the Taylor-type DTZNN model for solving the OFM problem.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, a discrete-time Zhang neural network (DTZNN) model, discretized from continuous-time Zhang neural network, is proposed and investigated for performing the online future minimization (OFM). In order to approximate more accurately the 1st-order derivative in computation and discretize more effectively the continuous-time Zhang neural network, a new Taylor-type numerical differentiation formula, together with the optimal sampling-gap rule, is presented and utilized to obtain the Taylor-type DTZNN model. For comparison, Euler-type DTZNN model and Newton iteration, with an interesting link being found, are also presented. Moreover, theoretical results of stability and convergence are presented, which show that the steady-state residual errors of the presented Taylor-type DTZNN model, Euler-type DTZNN model and Newton iteration have a pattern of 0(t3), 0(t2) and 0(t), respectively, with t denoting the sampling gap. Numerical experimental results further substantiate the effectiveness and advantages of the Taylor-type DTZNN model for solving the OFM problem.