{"title":"Privacy-Preserving Classification on Horizontally Partitioned Data","authors":"Tian Tian, Hua Duan, G. He","doi":"10.1109/CIS.2010.56","DOIUrl":null,"url":null,"abstract":"With the appearance of large-scale database and people's increasing concern about individual privacy, privacy-preserving data mining becomes a hot study area, to which the support vector machine(SVM) belongs. In this paper, a novel privacy-preserving SVM for horizontally partitioned data is given. It has comparable accuracy to that of an ordinary SVM as we obtain the SVM by using the distinct property of the orthogonal matrices.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the appearance of large-scale database and people's increasing concern about individual privacy, privacy-preserving data mining becomes a hot study area, to which the support vector machine(SVM) belongs. In this paper, a novel privacy-preserving SVM for horizontally partitioned data is given. It has comparable accuracy to that of an ordinary SVM as we obtain the SVM by using the distinct property of the orthogonal matrices.