{"title":"Thirty Years of Virtual Substitution: Foundations, Techniques, Applications","authors":"T. Sturm","doi":"10.1145/3208976.3209030","DOIUrl":null,"url":null,"abstract":"In 1988, Weispfenning published a seminal paper introducing a substitution technique for quantifier elimination in the linear theories of ordered and valued fields. The original focus was on complexity bounds including the important result that the decision problem for Tarski Algebra is bounded from below by a double exponential function. Soon after, Weispfenning's group began to implement substitution techniques in software in order to study their potential applicability to real world problems. Today virtual substitution has become an established computational tool, which greatly complements cylindrical algebraic decomposition. There are powerful implementations and applications with a current focus on satisfiability modulo theory solving and qualitative analysis of biological networks.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
In 1988, Weispfenning published a seminal paper introducing a substitution technique for quantifier elimination in the linear theories of ordered and valued fields. The original focus was on complexity bounds including the important result that the decision problem for Tarski Algebra is bounded from below by a double exponential function. Soon after, Weispfenning's group began to implement substitution techniques in software in order to study their potential applicability to real world problems. Today virtual substitution has become an established computational tool, which greatly complements cylindrical algebraic decomposition. There are powerful implementations and applications with a current focus on satisfiability modulo theory solving and qualitative analysis of biological networks.