Variance State Propagation for Channel Estimation in Underwater Acoustic Massive MIMO-OFDM with Clustered Channel Sparsity

Mingchen Zhang, Xiaoyan Kuai, Fanggang Wang, Xiaojun Yuan
{"title":"Variance State Propagation for Channel Estimation in Underwater Acoustic Massive MIMO-OFDM with Clustered Channel Sparsity","authors":"Mingchen Zhang, Xiaoyan Kuai, Fanggang Wang, Xiaojun Yuan","doi":"10.1109/ICCCWorkshops52231.2021.9538905","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the channel estimation problem in underwater acoustic (UWA) massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We first present a parametric UWA massive MIMO-OFDM channel model, and then formulate the channel estimation task as a sparse signal recovery problem. By exploiting the structured sparsity in the delay-Doppler-angle domain of the time-varying massive MIMO-OFDM channel, we develop a message-passing based channel estimation algorithm under the variance state propagation (VSP) framework. Simulation results show that our approach attains a significant performance improvement over the existing methods.","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we investigate the channel estimation problem in underwater acoustic (UWA) massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We first present a parametric UWA massive MIMO-OFDM channel model, and then formulate the channel estimation task as a sparse signal recovery problem. By exploiting the structured sparsity in the delay-Doppler-angle domain of the time-varying massive MIMO-OFDM channel, we develop a message-passing based channel estimation algorithm under the variance state propagation (VSP) framework. Simulation results show that our approach attains a significant performance improvement over the existing methods.
基于方差状态传播的聚类信道稀疏性水声海量MIMO-OFDM信道估计
本文研究了水声(UWA)大规模多输入多输出(MIMO)正交频分复用(OFDM)系统中的信道估计问题。首先提出了参数化UWA海量MIMO-OFDM信道模型,然后将信道估计任务表述为一个稀疏信号恢复问题。利用时变大规模MIMO-OFDM信道延迟-多普勒角域的结构化稀疏性,提出了一种方差状态传播(VSP)框架下基于消息传递的信道估计算法。仿真结果表明,该方法与现有方法相比,具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信