A novel and incremental classification algorithm

Huseyin Ozkan, Ozgun S. Pelvan, A. Akman, S. Kozat
{"title":"A novel and incremental classification algorithm","authors":"Huseyin Ozkan, Ozgun S. Pelvan, A. Akman, S. Kozat","doi":"10.1109/SIU.2012.6204520","DOIUrl":null,"url":null,"abstract":"In this paper, using “context tree weighting method”, a novel classification algorithm is proposed for real time machine learning applications, which is mathematically shown to be “competitive” with respect to a certain class of algorithms. The computational complexity of our algorithm is independent with the amount of data to be processed and linearly controllable. The proposed algorithm, hence, is highly scalable. In our experiments, our algorithm is observed to provide a comparable classification performance to the Support Vector Machines with Gaussian kernel with 40~1000× computational efficiency in the training phase and 5~35× in the test phase.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"42 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, using “context tree weighting method”, a novel classification algorithm is proposed for real time machine learning applications, which is mathematically shown to be “competitive” with respect to a certain class of algorithms. The computational complexity of our algorithm is independent with the amount of data to be processed and linearly controllable. The proposed algorithm, hence, is highly scalable. In our experiments, our algorithm is observed to provide a comparable classification performance to the Support Vector Machines with Gaussian kernel with 40~1000× computational efficiency in the training phase and 5~35× in the test phase.
一种新的增量分类算法
本文利用“上下文树加权法”,提出了一种新的用于实时机器学习应用的分类算法,该算法在数学上显示出相对于某一类算法的“竞争性”。算法的计算复杂度与处理的数据量无关,并且是线性可控的。因此,所提出的算法具有高度可扩展性。在我们的实验中,我们的算法提供了与高斯核支持向量机相当的分类性能,在训练阶段的计算效率为40~ 1000x,在测试阶段的计算效率为5~ 35x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信