Similarity search over enriched geospatial data

Kostas Patroumpas, Dimitrios Skoutas
{"title":"Similarity search over enriched geospatial data","authors":"Kostas Patroumpas, Dimitrios Skoutas","doi":"10.1145/3403896.3403967","DOIUrl":null,"url":null,"abstract":"Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.","PeriodicalId":433637,"journal":{"name":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3403896.3403967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.
丰富地理空间数据的相似度搜索
丰富的地理空间数据是指与来自各种来源(如文本、数字或时间)的附加信息相关联的地理空间实体。探索此类数据涉及多标准搜索和跨多个异构属性排序。在本文中,我们将此任务建模为一个秩聚集问题。我们的方法在不依赖于用户指定的参数的情况下自动缩放不同属性的相似性得分。它还允许在查询执行期间检索和组合来自多个源的信息。我们使用代表新闻文章的丰富地理空间实体的大型真实数据集来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信