Artificial Intelligence for Medical Image Interpretation Using Expert Knowledge and Machine Learning

Lars E.O. Jacobson, A. Hopgood, M. Bader-El-Den, V. Tamma, David Prendergast, P. Osborn, S. Siddiqui, A. Gegov, Farzad Arabikhan
{"title":"Artificial Intelligence for Medical Image Interpretation Using Expert Knowledge and Machine Learning","authors":"Lars E.O. Jacobson, A. Hopgood, M. Bader-El-Den, V. Tamma, David Prendergast, P. Osborn, S. Siddiqui, A. Gegov, Farzad Arabikhan","doi":"10.1109/CAI54212.2023.00059","DOIUrl":null,"url":null,"abstract":"In 2022 268,490 new cases and 34,500 deaths was estimated for prostate cancer in the United States. Diagnosis of prostate cancer is primarily based on prostate-specific antigen (PSA) screening and trans-rectal ultrasound (TRUS)-guided prostate biopsy. PSA has a low specificity of 36% since benign conditions can elevate the PSA levels. The data set used for prostate cancer consists of t2-weighted MR images for 1,151 patients and 61,119 images. This paper presents an approach to applying knowledge-based artificial intelligence together with image segmentation to improve the diagnosis of prostate cancer using publicly available data. Complete and reliable segmentation into the transition zone and peripheral zone is required in order to automate and enhance the process of prostate cancer diagnosis.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2022 268,490 new cases and 34,500 deaths was estimated for prostate cancer in the United States. Diagnosis of prostate cancer is primarily based on prostate-specific antigen (PSA) screening and trans-rectal ultrasound (TRUS)-guided prostate biopsy. PSA has a low specificity of 36% since benign conditions can elevate the PSA levels. The data set used for prostate cancer consists of t2-weighted MR images for 1,151 patients and 61,119 images. This paper presents an approach to applying knowledge-based artificial intelligence together with image segmentation to improve the diagnosis of prostate cancer using publicly available data. Complete and reliable segmentation into the transition zone and peripheral zone is required in order to automate and enhance the process of prostate cancer diagnosis.
使用专家知识和机器学习的医学图像解释人工智能
2022年,美国估计有268490例前列腺癌新发病例和34500例死亡病例。前列腺癌的诊断主要基于前列腺特异性抗原(PSA)筛查和经直肠超声(TRUS)引导的前列腺活检。PSA的特异性较低,为36%,因为良性疾病可使PSA水平升高。用于前列腺癌的数据集由1151名患者的t2加权MR图像和61119张图像组成。本文提出了一种将基于知识的人工智能与图像分割相结合的方法,利用公开可用的数据来提高前列腺癌的诊断。为了自动化和增强前列腺癌诊断过程,需要完整可靠地分割过渡区和外围区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信