Distributed Representations of Subgraphs

B. Adhikari, Yao Zhang, Naren Ramakrishnan, B. Prakash
{"title":"Distributed Representations of Subgraphs","authors":"B. Adhikari, Yao Zhang, Naren Ramakrishnan, B. Prakash","doi":"10.1109/ICDMW.2017.20","DOIUrl":null,"url":null,"abstract":"There has been a surge in research interest in learning feature representation of networks in recent times. Researchers, motivated by the recent successes of embeddings in natural language processing and advances in deep learning, have explored various means for network embedding. Network embedding is useful as it can exploit off-the-shelf machine learning algorithms for network mining tasks like node classification and link prediction. However, most recent works focus on learning feature representation of nodes, which are ill-suited to tasks such as community detection which are intuitively dependent on subgraphs. In this work, we formulate a novel subgraph embedding problem based on an intuitive property of subgraphs and propose SubVec, an unsupervised scalable algorithm to learn feature representations of arbitrary subgraphs. We demonstrate usability of features learned by SubVec by leveraging them for community detection problem, where it significantly out performs non-trivial baselines. We also conduct case-studies in two distinct domains to demonstrate wide applicability of SubVec.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

There has been a surge in research interest in learning feature representation of networks in recent times. Researchers, motivated by the recent successes of embeddings in natural language processing and advances in deep learning, have explored various means for network embedding. Network embedding is useful as it can exploit off-the-shelf machine learning algorithms for network mining tasks like node classification and link prediction. However, most recent works focus on learning feature representation of nodes, which are ill-suited to tasks such as community detection which are intuitively dependent on subgraphs. In this work, we formulate a novel subgraph embedding problem based on an intuitive property of subgraphs and propose SubVec, an unsupervised scalable algorithm to learn feature representations of arbitrary subgraphs. We demonstrate usability of features learned by SubVec by leveraging them for community detection problem, where it significantly out performs non-trivial baselines. We also conduct case-studies in two distinct domains to demonstrate wide applicability of SubVec.
子图的分布式表示
近年来,人们对学习网络特征表示的研究兴趣激增。在自然语言处理中嵌入的成功和深度学习的进步的推动下,研究人员探索了各种网络嵌入的方法。网络嵌入是有用的,因为它可以利用现成的机器学习算法进行网络挖掘任务,如节点分类和链接预测。然而,最近的工作主要集中在学习节点的特征表示上,这并不适合于像社区检测这样直观地依赖于子图的任务。在这项工作中,我们基于子图的直观性质提出了一个新的子图嵌入问题,并提出了SubVec,一种无监督可扩展算法来学习任意子图的特征表示。我们通过利用SubVec在社区检测问题上学习的特性来展示它们的可用性,在那里它显着优于非平凡基线。我们还在两个不同的领域进行案例研究,以证明SubVec的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信