Multiple Unmanned Vehicle Operations in Confined Areas

Zhang Qian, G. Leng, Vengatesan Govindaraju
{"title":"Multiple Unmanned Vehicle Operations in Confined Areas","authors":"Zhang Qian, G. Leng, Vengatesan Govindaraju","doi":"10.1109/GCIS.2013.61","DOIUrl":null,"url":null,"abstract":"The aim of the research is to study the dynamics of multiple unmanned air/ground/surface vehicles (UXV) operating in confined areas. A simple model of the UXV dynamics is first derived, and the expected time of first collision is then formulated using the concept of a mean free path from molecular dynamics. Monte-Carlo simulation is performed to verify the theory developed. In our formulation, the expected time of first collision is a function of number of UXVs, the UXV speed and sensor field of view (FOV) for a given operational area and vehicle size. From 1000 simulation runs for each set of operating conditions, a regression analysis was performed using the theoretical formula and a close fit with residuals of around 5% was obtained. The theory predicts that the expected time of first collision decreases at a decreasing rate when the number of vehicles and the speed increase, and will increase at an increasing rate when the FOV becomes larger. Furthermore, there is a critical number of UXVs, above which collision can be deemed to occur instantaneously. The results will be useful for the planning of UXV operations in confined areas.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the research is to study the dynamics of multiple unmanned air/ground/surface vehicles (UXV) operating in confined areas. A simple model of the UXV dynamics is first derived, and the expected time of first collision is then formulated using the concept of a mean free path from molecular dynamics. Monte-Carlo simulation is performed to verify the theory developed. In our formulation, the expected time of first collision is a function of number of UXVs, the UXV speed and sensor field of view (FOV) for a given operational area and vehicle size. From 1000 simulation runs for each set of operating conditions, a regression analysis was performed using the theoretical formula and a close fit with residuals of around 5% was obtained. The theory predicts that the expected time of first collision decreases at a decreasing rate when the number of vehicles and the speed increase, and will increase at an increasing rate when the FOV becomes larger. Furthermore, there is a critical number of UXVs, above which collision can be deemed to occur instantaneously. The results will be useful for the planning of UXV operations in confined areas.
在密闭区域内的多种无人驾驶车辆操作
该研究的目的是研究在密闭区域内操作的多架无人空中/地面/地面车辆(UXV)的动力学。首先推导了UXV动力学的一个简单模型,然后利用分子动力学的平均自由程概念推导了第一次碰撞的预期时间。通过蒙特卡罗仿真验证了所提出的理论。在我们的公式中,第一次碰撞的预期时间是UXV数量、UXV速度和给定操作区域和车辆尺寸的传感器视场(FOV)的函数。从每组操作条件的1000次模拟运行中,使用理论公式进行回归分析,获得了残差约5%的密切拟合。该理论预测,随着车辆数量和速度的增加,首次碰撞的预期时间呈递减趋势,随着视场的增大,首次碰撞的预期时间呈递增趋势。此外,还有一个临界数量的uxv,超过这个数量的碰撞可以被认为是瞬间发生的。研究结果将有助于在受限地区规划UXV行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信