Real-Time implementation of Diagnosis and Fault Detection for PV panel Based on Fuzzy Logic Classification

Marah Bacha, A. Terki, Madjda Bacha
{"title":"Real-Time implementation of Diagnosis and Fault Detection for PV panel Based on Fuzzy Logic Classification","authors":"Marah Bacha, A. Terki, Madjda Bacha","doi":"10.1109/ICAEE53772.2022.9962042","DOIUrl":null,"url":null,"abstract":"Detecting faults on PV systems is an essential and important part of monitoring and controlling electrical systems. Providing high-quality power supply requires an efficient diagnostic system capable of handling failures in photovoltaic systems. This paper proposes an experimental diagnosis for Photovoltaic Panel using the DS1104 platform in order to implement the diagnosis model developed in Matlab/Simulink® software. The Diagnosis technique has been achieved using an experimental database of climatic and electrical parameters from a PV panel installed at LGEB Laboratory of University of Biskra, (Algeria). The obtained results show a fast classification and give an accurate fault location using the Fuzzy Logic Classifier (FLC) (the investigated faults are: Different cases of shading effect and short-circuit of the By-pass diode).","PeriodicalId":206584,"journal":{"name":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE53772.2022.9962042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting faults on PV systems is an essential and important part of monitoring and controlling electrical systems. Providing high-quality power supply requires an efficient diagnostic system capable of handling failures in photovoltaic systems. This paper proposes an experimental diagnosis for Photovoltaic Panel using the DS1104 platform in order to implement the diagnosis model developed in Matlab/Simulink® software. The Diagnosis technique has been achieved using an experimental database of climatic and electrical parameters from a PV panel installed at LGEB Laboratory of University of Biskra, (Algeria). The obtained results show a fast classification and give an accurate fault location using the Fuzzy Logic Classifier (FLC) (the investigated faults are: Different cases of shading effect and short-circuit of the By-pass diode).
基于模糊逻辑分类的光伏板故障诊断与检测的实时实现
光伏系统故障检测是电力系统监控的重要组成部分。提供高质量的电力供应需要一个能够处理光伏系统故障的高效诊断系统。为了实现在Matlab/Simulink®软件中开发的诊断模型,本文提出了一种基于DS1104平台的光伏板故障诊断实验方法。诊断技术是利用安装在比斯克拉大学LGEB实验室的光伏板的气候和电气参数的实验数据库实现的(阿尔及利亚)。结果表明,采用模糊逻辑分类器(FLC)可以快速分类并给出准确的故障定位(所研究的故障有:不同情况的阴影效应和旁路二极管的短路)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信