Exploring Large Scale Receptor-Ligand Pairs in Molecular Docking Workflows in HPC Clouds

Kary A. C. S. Ocaña, Silvia Benza, Daniel de Oliveira, Jonas Dias, M. Mattoso
{"title":"Exploring Large Scale Receptor-Ligand Pairs in Molecular Docking Workflows in HPC Clouds","authors":"Kary A. C. S. Ocaña, Silvia Benza, Daniel de Oliveira, Jonas Dias, M. Mattoso","doi":"10.1109/IPDPSW.2014.65","DOIUrl":null,"url":null,"abstract":"Computer-aided drug design techniques are important assets in pharmaceutical industry because of their support for research and development of new drugs. Molecular docking (MD) predicts specific compound's binding modes within the active site of target proteins. Since MD is a time-consuming process, existing approaches reduce the number of receptors or ligands in docking by evaluating only small sets of compounds. This restriction in the search space reduces the chances to uniformly cover the diverse space of compounds and misses opportunities to recognize whether new drugs can be identified. Another difficulty with large-scale is analyzing the results, e.g. browsing all directories manually to find which pairs were docked successfully. To address these issues we explored the potential of data provenance analysis and parallel processing of SciCumulus, a cloud Scientific Workflow Management System. We present SciDock, a molecular docking-based virtual screening workflow and evaluate its execution using 10,000 receptor-ligand pairs related to proteases enzymes of protozoan genomes. The overall performance of SciDock using 32 cores, in cloud virtual machines, reaches improvements up to 95.4% when running SciDock with AutoDock and 96.1% when running SciDock with Vina. We show how data provenance improved the result analysis and how it may indicate potential proteases drug targets for protozoan treatments.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Computer-aided drug design techniques are important assets in pharmaceutical industry because of their support for research and development of new drugs. Molecular docking (MD) predicts specific compound's binding modes within the active site of target proteins. Since MD is a time-consuming process, existing approaches reduce the number of receptors or ligands in docking by evaluating only small sets of compounds. This restriction in the search space reduces the chances to uniformly cover the diverse space of compounds and misses opportunities to recognize whether new drugs can be identified. Another difficulty with large-scale is analyzing the results, e.g. browsing all directories manually to find which pairs were docked successfully. To address these issues we explored the potential of data provenance analysis and parallel processing of SciCumulus, a cloud Scientific Workflow Management System. We present SciDock, a molecular docking-based virtual screening workflow and evaluate its execution using 10,000 receptor-ligand pairs related to proteases enzymes of protozoan genomes. The overall performance of SciDock using 32 cores, in cloud virtual machines, reaches improvements up to 95.4% when running SciDock with AutoDock and 96.1% when running SciDock with Vina. We show how data provenance improved the result analysis and how it may indicate potential proteases drug targets for protozoan treatments.
探索HPC云分子对接流程中的大规模受体-配体对
计算机辅助药物设计技术是医药工业的重要资产,因为它支持新药的研究和开发。分子对接(Molecular docking, MD)预测了特定化合物在靶蛋白活性位点的结合模式。由于MD是一个耗时的过程,现有的方法通过仅评估一小组化合物来减少对接中的受体或配体的数量。这种对搜索空间的限制减少了统一覆盖化合物多样性空间的机会,也失去了识别新药是否可以被识别的机会。大规模的另一个困难是分析结果,例如,手动浏览所有目录以查找成功对接的目录对。为了解决这些问题,我们探索了SciCumulus(一个云科学工作流管理系统)的数据来源分析和并行处理的潜力。我们提出了基于分子对接的虚拟筛选工作流程SciDock,并使用10,000对与原生动物基因组蛋白酶相关的受体配体对评估其执行情况。在云虚拟机中,使用32核的SciDock的整体性能在使用AutoDock时提高了95.4%,在使用Vina时提高了96.1%。我们展示了数据来源如何改进结果分析,以及它如何可能表明潜在的蛋白酶药物靶点用于原生动物治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信