Metric-based model selection for time-series forecasting

Yoshua Bengio, Nicolas Chapados
{"title":"Metric-based model selection for time-series forecasting","authors":"Yoshua Bengio, Nicolas Chapados","doi":"10.1109/NNSP.2002.1030013","DOIUrl":null,"url":null,"abstract":"Metric-based methods, which use unlabeled data to detect gross differences in behavior away from the training points, have recently been introduced for model selection, often yielding very significant improvements over alternatives (including cross-validation). We introduce extensions that take advantage of the particular case of time-series data in which the task involves prediction with a horizon h. The ideas are: (i) to use at t the h unlabeled examples that precede t for model selection, and (ii) take advantage of the different error distributions of cross-validation and the metric methods. Experimental results establish the effectiveness of these extensions in the context of feature subset selection.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metric-based methods, which use unlabeled data to detect gross differences in behavior away from the training points, have recently been introduced for model selection, often yielding very significant improvements over alternatives (including cross-validation). We introduce extensions that take advantage of the particular case of time-series data in which the task involves prediction with a horizon h. The ideas are: (i) to use at t the h unlabeled examples that precede t for model selection, and (ii) take advantage of the different error distributions of cross-validation and the metric methods. Experimental results establish the effectiveness of these extensions in the context of feature subset selection.
基于度量的时间序列预测模型选择
基于度量的方法,它使用未标记的数据来检测远离训练点的行为的总体差异,最近被引入模型选择,通常比替代方法(包括交叉验证)产生非常显著的改进。我们引入了利用时间序列数据的特殊情况的扩展,其中任务涉及具有视界h的预测。其思想是:(i)在t时使用t之前的h个未标记示例进行模型选择,以及(ii)利用交叉验证和度量方法的不同误差分布。实验结果证明了这些扩展在特征子集选择方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信