An effectiveness measure for software clustering algorithms

Zhihua Wen, Vassilios Tzerpos
{"title":"An effectiveness measure for software clustering algorithms","authors":"Zhihua Wen, Vassilios Tzerpos","doi":"10.1109/WPC.2004.1311061","DOIUrl":null,"url":null,"abstract":"Selecting an appropriate software clustering algorithm that can help the process of understanding a large software system is a challenging issue. The effectiveness of a particular algorithm may be influenced by a number of different factors, such as the types of decompositions produced, or the way clusters are named. In this paper, we introduce an effectiveness measure for software clustering algorithms based on Mojo distance, and describe an algorithm that calculates its value. We also present experiments that demonstrate its improved performance over previous measures, and show how it can be used to assess the effectiveness of software clustering algorithms.","PeriodicalId":164866,"journal":{"name":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPC.2004.1311061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

Selecting an appropriate software clustering algorithm that can help the process of understanding a large software system is a challenging issue. The effectiveness of a particular algorithm may be influenced by a number of different factors, such as the types of decompositions produced, or the way clusters are named. In this paper, we introduce an effectiveness measure for software clustering algorithms based on Mojo distance, and describe an algorithm that calculates its value. We also present experiments that demonstrate its improved performance over previous measures, and show how it can be used to assess the effectiveness of software clustering algorithms.
软件聚类算法的有效性度量
选择合适的软件聚类算法来帮助理解大型软件系统的过程是一个具有挑战性的问题。特定算法的有效性可能受到许多不同因素的影响,例如产生的分解类型或集群的命名方式。本文介绍了一种基于Mojo距离的软件聚类算法的有效性度量,并描述了一种计算其值的算法。我们还提出了实验,证明了它比以前的测量方法的性能有所提高,并展示了如何使用它来评估软件聚类算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信