Metric retractions and similarity detecting algorithms

G. Sági, Karrar Al-Sabti
{"title":"Metric retractions and similarity detecting algorithms","authors":"G. Sági, Karrar Al-Sabti","doi":"10.1109/Informatics57926.2022.10083455","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{X}=\\langle X, \\varrho\\rangle$ be a metric space, let $A\\subseteq X$ and let $\\varepsilon$ be a positive real number. The similarity detecting problem is to find all $a\\in A$ for which $\\varrho(a, x)\\leq\\varepsilon$ where $x\\in X$ is a given input. In this work we study the similarity detecting problem with the additional assumption that $\\mathcal{X}$ is an ultrametric space of finite spectrum; these assumptions seem to be natural from the point of view of practical applications. We establish model theoretical results for ultrametric spaces. More concretely, we provide sufficient conditions for the existence of metric retractions for certain ultrametric spaces. Based on these theoretical results, we propose a similarity detecting algorithm for ultrametric spaces. The time complexity of our algorithm will be discussed, as well.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{X}=\langle X, \varrho\rangle$ be a metric space, let $A\subseteq X$ and let $\varepsilon$ be a positive real number. The similarity detecting problem is to find all $a\in A$ for which $\varrho(a, x)\leq\varepsilon$ where $x\in X$ is a given input. In this work we study the similarity detecting problem with the additional assumption that $\mathcal{X}$ is an ultrametric space of finite spectrum; these assumptions seem to be natural from the point of view of practical applications. We establish model theoretical results for ultrametric spaces. More concretely, we provide sufficient conditions for the existence of metric retractions for certain ultrametric spaces. Based on these theoretical results, we propose a similarity detecting algorithm for ultrametric spaces. The time complexity of our algorithm will be discussed, as well.
度量撤稿和相似度检测算法
设$\mathcal{X}=\langle X, \varrho\rangle$是一个度量空间,设$A\subseteq X$和$\varepsilon$是一个正实数。相似性检测问题是找到所有的$a\in A$,其中$\varrho(a, x)\leq\varepsilon$是给定输入,$x\in X$是给定输入。在本文中,我们研究了相似度检测问题,并附加假设$\mathcal{X}$是一个有限谱的超度量空间;从实际应用的角度来看,这些假设似乎是很自然的。建立了超尺度空间的模型理论结果。更具体地说,我们给出了某些超度量空间存在度量缩回的充分条件。基于这些理论结果,我们提出了一种超度量空间的相似性检测算法。我们的算法的时间复杂度也将被讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信