Ciarán Ó Conaire, Damien Connaghan, Philip Kelly, N. O’Connor, Mark Gaffney, J. Buckley
{"title":"Combining inertial and visual sensing for human action recognition in tennis","authors":"Ciarán Ó Conaire, Damien Connaghan, Philip Kelly, N. O’Connor, Mark Gaffney, J. Buckley","doi":"10.1145/1877868.1877882","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877868.1877882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration