{"title":"Geometric Phase Based Diffuse Scattering Metasurface with High-efficient Transmission Window","authors":"Yingjie Wang, X. Xie, Fang-kun Zhou, Ping Chen","doi":"10.1109/CSRSWTC50769.2020.9372505","DOIUrl":null,"url":null,"abstract":"In this paper, a geometric phase based diffuse scattering metasurface with a high-efficient transmission window is proposed and demonstrated. Meta-atom of this metasurface consists of scattering cancellation layer, dielectric spacer layer and band-pass frequency selective surface (FSS) layer. The binary elements of the metamaterial are meta-atom and its copy rotated by 90° inclined angle. Full-wave electromagnetic simulation indicated that 10 dB RCS reduction band is from 6.4 GHz to 11.3 GHz while the transmission band is 15.1 GHz with 0.3 dB insertion loss. Sample of this metamaterial was fabricated and measured to validate the simulation results.","PeriodicalId":207010,"journal":{"name":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSRSWTC50769.2020.9372505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a geometric phase based diffuse scattering metasurface with a high-efficient transmission window is proposed and demonstrated. Meta-atom of this metasurface consists of scattering cancellation layer, dielectric spacer layer and band-pass frequency selective surface (FSS) layer. The binary elements of the metamaterial are meta-atom and its copy rotated by 90° inclined angle. Full-wave electromagnetic simulation indicated that 10 dB RCS reduction band is from 6.4 GHz to 11.3 GHz while the transmission band is 15.1 GHz with 0.3 dB insertion loss. Sample of this metamaterial was fabricated and measured to validate the simulation results.