Parallel Processing of Data, Metadata, and Aggregates within an Archival Storage System User Interface (Toward Archiving a Million Files and a Million Megabytes per Minute)

M. Roschke, Danny P Cook, Bart J Parliman, David Sherrill
{"title":"Parallel Processing of Data, Metadata, and Aggregates within an Archival Storage System User Interface (Toward Archiving a Million Files and a Million Megabytes per Minute)","authors":"M. Roschke, Danny P Cook, Bart J Parliman, David Sherrill","doi":"10.1109/SNAPI.2008.10","DOIUrl":null,"url":null,"abstract":"Archiving large datasets requires parallel processing of both data and metadata for timely execution. This paper describes the work in progress to use various processing techniques, including multi-threading of data and metadata operations, distributed processing, aggregation, and conditional processing to achieve increased archival performance for large datasets.","PeriodicalId":335253,"journal":{"name":"2008 Fifth IEEE International Workshop on Storage Network Architecture and Parallel I/Os","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth IEEE International Workshop on Storage Network Architecture and Parallel I/Os","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAPI.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Archiving large datasets requires parallel processing of both data and metadata for timely execution. This paper describes the work in progress to use various processing techniques, including multi-threading of data and metadata operations, distributed processing, aggregation, and conditional processing to achieve increased archival performance for large datasets.
归档存储系统用户界面中数据、元数据和聚合的并行处理(面向每分钟归档百万文件和百万兆字节)
归档大型数据集需要并行处理数据和元数据,以便及时执行。本文描述了正在进行的使用各种处理技术的工作,包括数据和元数据操作的多线程、分布式处理、聚合和条件处理,以提高大型数据集的归档性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信