Conditioning and covariance on caterpillars

Sarah R. Allen, R. O'Donnell
{"title":"Conditioning and covariance on caterpillars","authors":"Sarah R. Allen, R. O'Donnell","doi":"10.1109/ITW.2015.7133115","DOIUrl":null,"url":null,"abstract":"Let X<sub>1</sub>, ..., X<sub>n</sub> be joint {±1}-valued random variables. It is known that conditioning on a random subset of O(1/ε<sup>2</sup>) of them reduces their average pairwise covariance to below ε (in expectation). We conjecture that O(1/ε<sup>2</sup>) can be improved to O(1/ε). The motivation for the problem and our conjectured improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We suggest attempting the conjecture in the case that X<sub>1</sub>, ..., X<sub>n</sub> are the leaves of an information flow tree. We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a two-state hidden Markov model).","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let X1, ..., Xn be joint {±1}-valued random variables. It is known that conditioning on a random subset of O(1/ε2) of them reduces their average pairwise covariance to below ε (in expectation). We conjecture that O(1/ε2) can be improved to O(1/ε). The motivation for the problem and our conjectured improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We suggest attempting the conjecture in the case that X1, ..., Xn are the leaves of an information flow tree. We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a two-state hidden Markov model).
毛虫的条件作用和协方差
设X1,…, Xn为联合{±1}值随机变量。已知,对其中的O(1/ε2)个随机子集施加条件,可使它们的平均成对协方差低于ε(期望)。我们推测O(1/ε2)可以改进为O(1/ε)。问题的动机和我们推测的改进来自凸松弛层次的全局相关舍入理论。我们建议在X1,…的情况下尝试这个猜想。, Xn是信息流树的叶子。在信息流树为履带图(类似于两态隐马尔可夫模型)的情况下,证明了该猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信