Asymptotic Analysis of Sloshing in a Rectangular Tank

G. Saravanan, S. Sannasiraj, V. Sundar
{"title":"Asymptotic Analysis of Sloshing in a Rectangular Tank","authors":"G. Saravanan, S. Sannasiraj, V. Sundar","doi":"10.1260/1759-3131.5.2.89","DOIUrl":null,"url":null,"abstract":"An Asymptotic solution of liquid sloshing motion in a rectangular tank is presented based on the potential flow theory. A rectangular tank is excited harmonically, in the sway and heave modes. The Stokes perturbation theory is used to resolve the boundary value problem. The perturbed problem reduces to the non-homogeneous Mathieu's equation in the case of coupled harmonic excitations, which induces the sloshing motion subjected to parametric rolling of the tank. Lindstedt-Poincare’ method is used to determine the stable solution of the Mathieu's equation.","PeriodicalId":105024,"journal":{"name":"The International Journal of Ocean and Climate Systems","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Ocean and Climate Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3131.5.2.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An Asymptotic solution of liquid sloshing motion in a rectangular tank is presented based on the potential flow theory. A rectangular tank is excited harmonically, in the sway and heave modes. The Stokes perturbation theory is used to resolve the boundary value problem. The perturbed problem reduces to the non-homogeneous Mathieu's equation in the case of coupled harmonic excitations, which induces the sloshing motion subjected to parametric rolling of the tank. Lindstedt-Poincare’ method is used to determine the stable solution of the Mathieu's equation.
矩形槽内晃动的渐近分析
基于势流理论,给出了矩形槽内液体晃动运动的渐近解。矩形水箱受谐波激励,处于摇摆和升沉模式。采用Stokes摄动理论求解边值问题。在耦合简谐激励下,扰动问题转化为非齐次马修方程,引起罐体在参数滚动作用下的晃动运动。利用Lindstedt-Poincare方法确定了Mathieu方程的稳定解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信