Man Versus Machine: Complex Estimates and Auditor Reliance on Artificial Intelligence

Benjamin P. Commerford, Sean A. Dennis, Jennifer R. Joe, Jenny W. Ulla
{"title":"Man Versus Machine: Complex Estimates and Auditor Reliance on Artificial Intelligence","authors":"Benjamin P. Commerford, Sean A. Dennis, Jennifer R. Joe, Jenny W. Ulla","doi":"10.2139/ssrn.3422591","DOIUrl":null,"url":null,"abstract":"Audit firms are investing billions of dollars to develop artificial intelligence (AI) systems that will help auditors execute challenging tasks (e.g., evaluating complex estimates). Although firms assume AI will enhance audit quality, a growing body of research documents that individuals often exhibit “algorithm aversion” – the tendency to discount computer-based advice more heavily than human advice, although the advice is identical otherwise. Therefore, we conduct an experiment to examine how algorithm aversion manifests in auditor judgments. Consistent with theory, we find that auditors receiving contradictory evidence from their firm’s specialist system (instead of a human specialist) propose smaller adjustments to management’s complex estimates, particularly when management develops their estimates using relatively objective (versus subjective) inputs. Our findings suggest auditor susceptibility to algorithm aversion could prove costly for the profession and financial statements users.","PeriodicalId":241211,"journal":{"name":"CompSciRN: Artificial Intelligence (Topic)","volume":"575 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Artificial Intelligence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3422591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Audit firms are investing billions of dollars to develop artificial intelligence (AI) systems that will help auditors execute challenging tasks (e.g., evaluating complex estimates). Although firms assume AI will enhance audit quality, a growing body of research documents that individuals often exhibit “algorithm aversion” – the tendency to discount computer-based advice more heavily than human advice, although the advice is identical otherwise. Therefore, we conduct an experiment to examine how algorithm aversion manifests in auditor judgments. Consistent with theory, we find that auditors receiving contradictory evidence from their firm’s specialist system (instead of a human specialist) propose smaller adjustments to management’s complex estimates, particularly when management develops their estimates using relatively objective (versus subjective) inputs. Our findings suggest auditor susceptibility to algorithm aversion could prove costly for the profession and financial statements users.
人与机器:复杂的估计和审计师对人工智能的依赖
审计公司正在投资数十亿美元开发人工智能(AI)系统,以帮助审计人员执行具有挑战性的任务(例如,评估复杂的估算)。尽管公司认为人工智能将提高审计质量,但越来越多的研究文件显示,个人往往表现出“算法厌恶”——即倾向于低估基于计算机的建议,而不是人类的建议,尽管这些建议在其他方面是相同的。因此,我们进行了一项实验来检验算法厌恶如何在审计师的判断中表现出来。与理论一致,我们发现审计师从他们公司的专家系统(而不是人类专家)那里得到矛盾的证据,对管理层的复杂估计提出较小的调整,特别是当管理层使用相对客观(相对主观)的输入来制定他们的估计时。我们的研究结果表明,审计师对算法厌恶的敏感性可能会给职业和财务报表使用者带来高昂的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信