Spin orbit torques and chiral spin textures in ultrathin magnetic films (Presentation Recording)

G. Beach
{"title":"Spin orbit torques and chiral spin textures in ultrathin magnetic films (Presentation Recording)","authors":"G. Beach","doi":"10.1117/12.2191374","DOIUrl":null,"url":null,"abstract":"Spin orbit coupling at interfaces can give rise to chiral magnetic textures such as homochiral domain walls and skyrmions, as well as current-induced torques that can effectively manipulate them [1-3]. This talk will describe interface-driven spin-orbit torques and Dzyaloshinskii-Moriya interactions (DMIs) in ultrathin metallic ferromagnets adjacent to nonmagnetic heavy metals. We show that the DMI depends strongly on the heavy metal, differing by a factor of ~20 between Pt and Ta [4], and describe the influence of strong DMI on domain wall dynamics and spin Hall effect switching [5]. We present high-resolution magnetic force microscopy imaging of static magnetic textures that directly reveal the role of DMI and allow its strength to be quantified. Finally, we will describe how SOTs can be enhanced through interface engineering [6] and tuned by a gate voltage [7] by directly controlling the interfacial oxygen coordination at a ferromagnet/oxide interface [8]. [1] A. Thiaville, et al., Europhys. Lett. 100, 57002 (2012). [2] S. Emori, et al., Nature Mater. 12, 611 (2013). [3] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nano. 8, 839 (2013). [4] S. Emori, et al., Phys. Rev. B 90, 184427 (2014). [5] N. Perez, et al., Appl. Phys. Lett. 104, 092403 (2014). [6] S. Woo, et al., Appl. Phys. Lett. 105, 212404 (2014). [7] S. Emori, et al., Appl. Phys. Lett. 105, 222401 (2014). [8] U. Bauer, et al., Nature Mater. 14, 174 (2015).","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spin orbit coupling at interfaces can give rise to chiral magnetic textures such as homochiral domain walls and skyrmions, as well as current-induced torques that can effectively manipulate them [1-3]. This talk will describe interface-driven spin-orbit torques and Dzyaloshinskii-Moriya interactions (DMIs) in ultrathin metallic ferromagnets adjacent to nonmagnetic heavy metals. We show that the DMI depends strongly on the heavy metal, differing by a factor of ~20 between Pt and Ta [4], and describe the influence of strong DMI on domain wall dynamics and spin Hall effect switching [5]. We present high-resolution magnetic force microscopy imaging of static magnetic textures that directly reveal the role of DMI and allow its strength to be quantified. Finally, we will describe how SOTs can be enhanced through interface engineering [6] and tuned by a gate voltage [7] by directly controlling the interfacial oxygen coordination at a ferromagnet/oxide interface [8]. [1] A. Thiaville, et al., Europhys. Lett. 100, 57002 (2012). [2] S. Emori, et al., Nature Mater. 12, 611 (2013). [3] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nano. 8, 839 (2013). [4] S. Emori, et al., Phys. Rev. B 90, 184427 (2014). [5] N. Perez, et al., Appl. Phys. Lett. 104, 092403 (2014). [6] S. Woo, et al., Appl. Phys. Lett. 105, 212404 (2014). [7] S. Emori, et al., Appl. Phys. Lett. 105, 222401 (2014). [8] U. Bauer, et al., Nature Mater. 14, 174 (2015).
超薄磁性薄膜中的自旋轨道转矩和手性自旋织构(演示记录)
界面处的自旋轨道耦合可以产生手性磁织构,如同手性畴壁和skyrmions,以及可以有效操纵它们的电流诱导转矩[1-3]。本次演讲将描述界面驱动的自旋轨道扭矩和Dzyaloshinskii-Moriya相互作用(dmii)在与非磁性重金属相邻的超薄金属铁磁体中。我们发现DMI强烈依赖于重金属,在Pt和Ta之间相差约20倍[4],并描述了强DMI对畴壁动力学和自旋霍尔效应开关的影响[5]。我们展示了静态磁性结构的高分辨率磁力显微镜成像,直接揭示了DMI的作用,并允许其强度被量化。最后,我们将描述如何通过界面工程[6]增强sot,并通过直接控制铁磁体/氧化物界面上的界面氧配位[8]通过栅极电压[7]进行调谐。[1]李晓明,李晓明,等。植物学报,2000,57002(2012)。[2]王晓明,王晓明,王晓明,等。气候变化与气候变化的关系。[3]张晓明,张晓明,张晓明,等。中国科学:自然科学进展,2013,33(4):387 - 387。[4]李春华,李春华,等。Rev. B 90, 184427(2014)。[5]李志强,李志强,等。理论物理。生物工程学报,2014,29(2)。[6]吴志强,李志强,等。理论物理。快报,105,212404(2014)。[7]李春华,李春华。理论物理。科学通报,2014,22(2)。[8]王晓明,王晓明,等。生物多样性与生物多样性研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信