Error bounds for asymptotic solutions of differential equations.I. Distinct eigenvalue case

F. Stenger
{"title":"Error bounds for asymptotic solutions of differential equations.I. Distinct eigenvalue case","authors":"F. Stenger","doi":"10.6028/JRES.070B.017","DOIUrl":null,"url":null,"abstract":"The method of Olver for bounding the error term in the asymptotic so lutions of a second-order equation having a n irregular singul arity at infinity is extended to the general system of n first-order equations in the case when the eigenvalu es of the lead coefficient matrix are distinct. Vector and norm bounds are given for the difference between an actual solution vector and a partial su m of a formal so lution vector. Two cases are distinguished geometrica ll y: In one it is possible to express the error vec tor by a s ingle Volterra vec tor integral equat.ion; in the other it is necessary to use a simultaneous pair of Volterra vector integral equations. Some ne w inequalities for integral equations are given in an append ix.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1966-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.070B.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The method of Olver for bounding the error term in the asymptotic so lutions of a second-order equation having a n irregular singul arity at infinity is extended to the general system of n first-order equations in the case when the eigenvalu es of the lead coefficient matrix are distinct. Vector and norm bounds are given for the difference between an actual solution vector and a partial su m of a formal so lution vector. Two cases are distinguished geometrica ll y: In one it is possible to express the error vec tor by a s ingle Volterra vec tor integral equat.ion; in the other it is necessary to use a simultaneous pair of Volterra vector integral equations. Some ne w inequalities for integral equations are given in an append ix.
微分方程渐近解的误差界。不同特征值情况
本文将具有n个不规则无穷奇点的二阶方程渐近解中误差项边界的Olver方法推广到n个一阶方程的一般系统中,在导系数矩阵的特征值不同的情况下。给出了实际解向量与形式解向量的偏su之间的差的向量和范数边界。用几何方法区分了两种情况:一种情况是误差向量可以用积分方程的单个Volterra向量表示;在另一种情况下,需要同时使用一对Volterra矢量积分方程。在附录ix中给出了一些新的积分方程不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信