Eigenvalue right-outer bounds for polytopes of Metzler matrices and systems applications

O. Pastravanu, M. Matcovschi
{"title":"Eigenvalue right-outer bounds for polytopes of Metzler matrices and systems applications","authors":"O. Pastravanu, M. Matcovschi","doi":"10.1109/ISSCS.2017.8034897","DOIUrl":null,"url":null,"abstract":"Metzler matrices are algebraically characterized by having nonnegative off-diagonal entries and, from the dynamical point of view, define continuous-time positive systems. Our work studies polytopes of Metzler matrices and linear dynamics generated by such sets. The first part of the paper explores the algebraic properties of matrix polytopes, by focusing on the estimation of a right outer bound for all eigenvalues. The second part analyzes the dynamical properties of positive polytopic systems, by revealing connections between the estimated right outer bound and the evolution of trajectories (related to copositive Lyapunov functions and invariant sets).","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metzler matrices are algebraically characterized by having nonnegative off-diagonal entries and, from the dynamical point of view, define continuous-time positive systems. Our work studies polytopes of Metzler matrices and linear dynamics generated by such sets. The first part of the paper explores the algebraic properties of matrix polytopes, by focusing on the estimation of a right outer bound for all eigenvalues. The second part analyzes the dynamical properties of positive polytopic systems, by revealing connections between the estimated right outer bound and the evolution of trajectories (related to copositive Lyapunov functions and invariant sets).
Metzler矩阵多面体的特征值右外界及其系统应用
Metzler矩阵具有非负的非对角项的代数特征,并且从动力学的角度定义了连续时间的正系统。我们的工作研究了Metzler矩阵的多面体和由这些集合产生的线性动力学。本文第一部分探讨了矩阵多面体的代数性质,重点讨论了所有特征值的右外界的估计。第二部分通过揭示估计的右外界与轨迹(与合成Lyapunov函数和不变集有关)的演化之间的联系,分析了正多面体系统的动力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信