Geometric Generative Gaze Estimation (G3E) for Remote RGB-D Cameras

Kenneth Alberto Funes Mora, J. Odobez
{"title":"Geometric Generative Gaze Estimation (G3E) for Remote RGB-D Cameras","authors":"Kenneth Alberto Funes Mora, J. Odobez","doi":"10.1109/CVPR.2014.229","DOIUrl":null,"url":null,"abstract":"We propose a head pose invariant gaze estimation model for distant RGB-D cameras. It relies on a geometric understanding of the 3D gaze action and generation of eye images. By introducing a semantic segmentation of the eye region within a generative process, the model (i) avoids the critical feature tracking of geometrical approaches requiring high resolution images, (ii) decouples the person dependent geometry from the ambient conditions, allowing adaptation to different conditions without retraining. Priors in the generative framework are adequate for training from few samples. In addition, the model is capable of gaze extrapolation allowing for less restrictive training schemes. Comparisons with state of the art methods validate these properties which make our method highly valuable for addressing many diverse tasks in sociology, HRI and HCI.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"88 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

We propose a head pose invariant gaze estimation model for distant RGB-D cameras. It relies on a geometric understanding of the 3D gaze action and generation of eye images. By introducing a semantic segmentation of the eye region within a generative process, the model (i) avoids the critical feature tracking of geometrical approaches requiring high resolution images, (ii) decouples the person dependent geometry from the ambient conditions, allowing adaptation to different conditions without retraining. Priors in the generative framework are adequate for training from few samples. In addition, the model is capable of gaze extrapolation allowing for less restrictive training schemes. Comparisons with state of the art methods validate these properties which make our method highly valuable for addressing many diverse tasks in sociology, HRI and HCI.
远程RGB-D相机的几何生成凝视估计(G3E)
提出了一种用于远距离RGB-D相机的头部姿态不变凝视估计模型。它依赖于对3D凝视动作的几何理解和眼睛图像的生成。通过在生成过程中引入眼睛区域的语义分割,该模型(i)避免了需要高分辨率图像的几何方法的关键特征跟踪,(ii)将依赖于人的几何与环境条件解耦,允许在不重新训练的情况下适应不同的条件。生成框架中的先验对于少量样本的训练是足够的。此外,该模型能够进行凝视外推,允许较少限制的训练方案。与最先进方法的比较验证了这些特性,使我们的方法在解决社会学、人力资源研究所和人力资源研究所的许多不同任务方面具有很高的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信