MEMBANGUN MODEL DINAMIS PENANGKARAN POPULASI MALEO (Macrochepalon Maleo) YANG MEMPERTAHANKAN EKSISTENSINYA DARI PREDATOR

T. Gusmawan, R. Ratianingsih, N. Nacong
{"title":"MEMBANGUN MODEL DINAMIS PENANGKARAN POPULASI MALEO (Macrochepalon Maleo) YANG MEMPERTAHANKAN EKSISTENSINYA DARI PREDATOR","authors":"T. Gusmawan, R. Ratianingsih, N. Nacong","doi":"10.22487/2540766X.2018.V15.I2.11349","DOIUrl":null,"url":null,"abstract":"Maleo (Macrocephalon maleo) is one of the endangered endemic species of Sulawesi due to diminishing spawning habitat, community exploitation and predators. The dynamic model of maleo population captivity to conserve its existence from predators is a mathematical model that describes the dynamics of maleo population growth cycle (M) with the threat of predators (P). In this study, the population of eggs maleo divided into two groups that are eggs in the free zone (Tb) and eggs in breeding (Tp). The eggs are in the captive breeding will be transfered to the exposure group (E). The model represents the interaction between the predators and populations reflecting maleo in each growth phase. The model has two critical points, namely the critical point 𝑇1 = ( 0,0,0,0, 𝜑 µ2 ) describing maleo extinction condition and critical point 𝑇2 = (𝑀∗ , 𝑇𝑝∗ ,𝐸 ∗ , 𝑇𝑏∗ , 𝑃 ∗ ) which describes the endemic conditions of maleo growth dynamics. The stability analysis shows that the system is unstable at both critical points. It is because the values of the first column in the Routh Hurwitz table changes in sign. Simulations of the endemic conditions showed that the maleo and egg populations in the free zone are decreasing with respect to time even though the exposed maleo still exist. The unstable endemic indicates that the existence of maleo breeding program in conservation areas still need another efforts support.","PeriodicalId":259622,"journal":{"name":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/2540766X.2018.V15.I2.11349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maleo (Macrocephalon maleo) is one of the endangered endemic species of Sulawesi due to diminishing spawning habitat, community exploitation and predators. The dynamic model of maleo population captivity to conserve its existence from predators is a mathematical model that describes the dynamics of maleo population growth cycle (M) with the threat of predators (P). In this study, the population of eggs maleo divided into two groups that are eggs in the free zone (Tb) and eggs in breeding (Tp). The eggs are in the captive breeding will be transfered to the exposure group (E). The model represents the interaction between the predators and populations reflecting maleo in each growth phase. The model has two critical points, namely the critical point 𝑇1 = ( 0,0,0,0, 𝜑 µ2 ) describing maleo extinction condition and critical point 𝑇2 = (𝑀∗ , 𝑇𝑝∗ ,𝐸 ∗ , 𝑇𝑏∗ , 𝑃 ∗ ) which describes the endemic conditions of maleo growth dynamics. The stability analysis shows that the system is unstable at both critical points. It is because the values of the first column in the Routh Hurwitz table changes in sign. Simulations of the endemic conditions showed that the maleo and egg populations in the free zone are decreasing with respect to time even though the exposed maleo still exist. The unstable endemic indicates that the existence of maleo breeding program in conservation areas still need another efforts support.
建立了MALEO种群的动态育种模型,以保持其在捕食者面前的生存
由于产卵栖息地减少、群落开发和捕食者的存在,大头鲨(Macrocephalon Maleo)是苏拉威西岛濒危的特有物种之一。为保护雄鱼种群不受捕食者侵害而圈养的动态模型是描述雄鱼种群生长周期(M)随捕食者威胁(P)变化的动态数学模型。本研究将卵雄鱼种群分为自由区卵(Tb)和繁殖区卵(Tp)两组。圈养繁殖的卵将被转移到暴露组(E)。该模型代表了捕食者和种群之间的相互作用,反映了每个生长阶段的雄性。该模型有两个临界点,分别是描述雄性灭绝条件的临界点𝑇1 =(0,0,0,0,变量1 - 2)和描述雄性生长动态特有条件的临界点𝑇2 =(𝑀∗,𝑇𝑝∗,∗,𝑇𝑏∗,∗)。稳定性分析表明系统在两个临界点处都是不稳定的。这是因为Routh Hurwitz表中第一列的值在符号上发生了变化。对流行条件的模拟表明,即使暴露的雄虫仍然存在,自由区内雄虫和卵的数量也随时间的推移而减少。这种不稳定的地方性表明,保护区雄性繁殖计划的存在还需要进一步的努力和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信