FPGA implementation of closed-loop control system for small-scale robot

Wei Zhao, B. Kim, A. Larson, R. Voyles
{"title":"FPGA implementation of closed-loop control system for small-scale robot","authors":"Wei Zhao, B. Kim, A. Larson, R. Voyles","doi":"10.1109/ICAR.2005.1507393","DOIUrl":null,"url":null,"abstract":"Small robots can be beneficial to important applications such as civilian search and rescue and military surveillance, but their limited resources constrain their functionality and performance. To address this, a reconfigurable technique based on field-programmable gate arrays (FPGAs) may be applied, which has the potential for greater functionality and higher performance, but with smaller volume and lower power dissipation. This project investigates an FPGA-based PID motion control system for small, self-adaptive systems. For one channel control, parallel and serial architectures for the PID control algorithm are designed and implemented. Based on these one-channel designs, four architectures for multiple-channel control are proposed and two channel-level serial (CLS) architectures are designed and implemented. Functional correctness of all the designs was verified in motor control experiments, and area, speed, and power consumption were analyzed. The tradeoffs between the different designs are discussed in terms of area, power consumption, and execution time with respect to number of channels, sampling rate, and control clock frequency. The data gathered in this paper will be leveraged in future work to dynamically adapt the robot at run time","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

Small robots can be beneficial to important applications such as civilian search and rescue and military surveillance, but their limited resources constrain their functionality and performance. To address this, a reconfigurable technique based on field-programmable gate arrays (FPGAs) may be applied, which has the potential for greater functionality and higher performance, but with smaller volume and lower power dissipation. This project investigates an FPGA-based PID motion control system for small, self-adaptive systems. For one channel control, parallel and serial architectures for the PID control algorithm are designed and implemented. Based on these one-channel designs, four architectures for multiple-channel control are proposed and two channel-level serial (CLS) architectures are designed and implemented. Functional correctness of all the designs was verified in motor control experiments, and area, speed, and power consumption were analyzed. The tradeoffs between the different designs are discussed in terms of area, power consumption, and execution time with respect to number of channels, sampling rate, and control clock frequency. The data gathered in this paper will be leveraged in future work to dynamically adapt the robot at run time
小型机器人闭环控制系统的FPGA实现
小型机器人可以在民用搜救和军事监视等重要应用中发挥作用,但它们有限的资源限制了它们的功能和性能。为了解决这个问题,可能会应用基于现场可编程门阵列(fpga)的可重构技术,该技术具有更大的功能和更高的性能,但体积更小,功耗更低。本课题研究一种基于fpga的PID运动控制系统,用于小型自适应系统。对于单通道控制,设计并实现了PID控制算法的并行和串行结构。在此基础上,提出了四种多通道控制体系结构,设计并实现了两通道级串行(CLS)体系结构。在电机控制实验中验证了所有设计的功能正确性,并对其面积、速度和功耗进行了分析。讨论了不同设计之间的权衡,包括通道数、采样率和控制时钟频率方面的面积、功耗和执行时间。本文收集的数据将在未来的工作中用于在运行时动态调整机器人
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信