Neural Network with Migration Parallel GA for Adaptive Control of Integrated DE-PSO Parameters

Hieu Pham, Sousuke Tooyama, H. Hasegawa
{"title":"Neural Network with Migration Parallel GA for Adaptive Control of Integrated DE-PSO Parameters","authors":"Hieu Pham, Sousuke Tooyama, H. Hasegawa","doi":"10.1109/EUROSIM.2013.13","DOIUrl":null,"url":null,"abstract":"This study develops an evolutionary strategy called DEPSO-GANN, which uses an artificial neural network (ANN) based on a parallel genetic algorithm (PGA) with migration for the adaptive control of integrated differential evolution (DE) and particle swarm optimization (PSO) to solve large-scale optimization problems, reduce calculation costs, and improve the stability of convergence towards the optimal solution. This approach combines the global search ability of DE and the local search ability of adaptive system with migration parallel GA. The proposed algorithm incorporates concepts from DE, PSO, PGA and neural networks (NN) to facilitate the adaptive control of parameters. DEPSO-GANN is applied to several numerical benchmark tests with multiple dimensions to evaluate its performance, it is also compared with other evolutionary algorithms (EAs) and memetic algorithms (MAs), which is shown to be statistically significantly superior to other EAs and MAs. We confirm satisfactory performance through various benchmark tests.","PeriodicalId":386945,"journal":{"name":"2013 8th EUROSIM Congress on Modelling and Simulation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th EUROSIM Congress on Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIM.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study develops an evolutionary strategy called DEPSO-GANN, which uses an artificial neural network (ANN) based on a parallel genetic algorithm (PGA) with migration for the adaptive control of integrated differential evolution (DE) and particle swarm optimization (PSO) to solve large-scale optimization problems, reduce calculation costs, and improve the stability of convergence towards the optimal solution. This approach combines the global search ability of DE and the local search ability of adaptive system with migration parallel GA. The proposed algorithm incorporates concepts from DE, PSO, PGA and neural networks (NN) to facilitate the adaptive control of parameters. DEPSO-GANN is applied to several numerical benchmark tests with multiple dimensions to evaluate its performance, it is also compared with other evolutionary algorithms (EAs) and memetic algorithms (MAs), which is shown to be statistically significantly superior to other EAs and MAs. We confirm satisfactory performance through various benchmark tests.
基于迁移并行遗传算法的神经网络集成DE-PSO参数自适应控制
本研究提出了一种进化策略DEPSO-GANN,该策略利用基于并行遗传算法(PGA)的人工神经网络(ANN)进行集成差分进化(DE)和粒子群优化(PSO)的自适应控制,以解决大规模优化问题,降低计算成本,提高收敛到最优解的稳定性。该方法将遗传算法的全局搜索能力和自适应系统的局部搜索能力与迁移并行遗传算法相结合。该算法结合了遗传算法(DE)、粒子群算法(PSO)、粒子群算法(PGA)和神经网络(NN)的概念,以实现参数的自适应控制。将DEPSO-GANN应用于多个多维数值基准测试,对其性能进行了评价,并与其他进化算法(EAs)和模因算法(MAs)进行了比较,结果表明,DEPSO-GANN的性能明显优于其他进化算法和模因算法。我们通过各种基准测试确认了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信