Partial classification: the benefit of indecision

Y. Baram
{"title":"Partial classification: the benefit of indecision","authors":"Y. Baram","doi":"10.1109/KES.1998.725855","DOIUrl":null,"url":null,"abstract":"Classification methods may be improved in the sense of a meaningful, economically motivated benefit function, by allowing for indecision in a certain domains near the separation surfaces between the classes. Such a \"partial\" classifier, based on the intersection surface between parameterized probability density functions, is proposed. It is found to be beneficial with respect to \"full\" classification, assigning each new object to a class, in the prediction of stock behaviour.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification methods may be improved in the sense of a meaningful, economically motivated benefit function, by allowing for indecision in a certain domains near the separation surfaces between the classes. Such a "partial" classifier, based on the intersection surface between parameterized probability density functions, is proposed. It is found to be beneficial with respect to "full" classification, assigning each new object to a class, in the prediction of stock behaviour.
部分分类:优柔寡断的好处
通过允许在类之间的分离面附近的某些领域中存在优柔寡断,分类方法可以在有意义的、经济上有动机的利益函数的意义上得到改进。提出了一种基于参数化概率密度函数相交面的“部分”分类器。人们发现,在预测股票行为时,它有利于“完全”分类,将每个新对象分配到一个类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信