Rajat Sadhukhan, Sayandeep Saha, Debdeep Mukhopadhyay
{"title":"AntiSIFA-CAD: A Framework to Thwart SIFA at the Layout Level","authors":"Rajat Sadhukhan, Sayandeep Saha, Debdeep Mukhopadhyay","doi":"10.1145/3508352.3549480","DOIUrl":null,"url":null,"abstract":"Fault Attacks (FA) have gained a lot of attention from both industry and academia due to their practicality, and wide applicability to different domains of computing. In the context of symmetric-key cryptography, designing countermeasures against FA is still an open problem. Recently proposed attacks such as Statistical Ineffective Fault Analysis (SIFA) has shown that merely adding redundancy or infection-based countermeasure to detect the fault doesn’t work and a proper combination of masking and error correction/detection is required. In this work, we show that masking which is mathematically established as a good countermeasure against a certain class of SIFA faults, in practice may fall short if low-level details during physical design layout development are not taken care of. We initiate this study by demonstrating a successful SIFA attack on a post placed-and-routed masked crypto design for ASIC platform. Eventually, we propose a fully automated approach along with a proper choice of placement constraints which can be realized easily for any commercial CAD tools to successfully get rid of this vulnerability during the physical layout development process. Our experimental validation of our tool flow over masked implementation on PRESENT cipher establishes our claim.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fault Attacks (FA) have gained a lot of attention from both industry and academia due to their practicality, and wide applicability to different domains of computing. In the context of symmetric-key cryptography, designing countermeasures against FA is still an open problem. Recently proposed attacks such as Statistical Ineffective Fault Analysis (SIFA) has shown that merely adding redundancy or infection-based countermeasure to detect the fault doesn’t work and a proper combination of masking and error correction/detection is required. In this work, we show that masking which is mathematically established as a good countermeasure against a certain class of SIFA faults, in practice may fall short if low-level details during physical design layout development are not taken care of. We initiate this study by demonstrating a successful SIFA attack on a post placed-and-routed masked crypto design for ASIC platform. Eventually, we propose a fully automated approach along with a proper choice of placement constraints which can be realized easily for any commercial CAD tools to successfully get rid of this vulnerability during the physical layout development process. Our experimental validation of our tool flow over masked implementation on PRESENT cipher establishes our claim.