{"title":"CNN and M-SLIC Superpixels Feature Fusion for VHR Image Classification","authors":"Belkis Asma Semcheddine, A. Daamouche","doi":"10.1109/ICATEEE57445.2022.10093756","DOIUrl":null,"url":null,"abstract":"In this letter, we present a method for fusing handcrafted features with abstract features for the purpose of VHR remote sensing image classification. The proposed strategy allows for a multi-level feature fusion, which enriches the available spectral data, resulting in a better class separability. In a first step, deep features are extracted using Convolutional Neural Networks. These features are then fused with Haralick features drawn out by means of M-SLIC superpixels segmentation. The combined features are then concatenated with the spectral features of the image and classified using Support Vector Machines. Our experiments were conducted on a VHR satellite image, and the obtained results qualify us to validate the superiority of the suggested scheme (over 16% overall classification accuracy improvement).","PeriodicalId":150519,"journal":{"name":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATEEE57445.2022.10093756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present a method for fusing handcrafted features with abstract features for the purpose of VHR remote sensing image classification. The proposed strategy allows for a multi-level feature fusion, which enriches the available spectral data, resulting in a better class separability. In a first step, deep features are extracted using Convolutional Neural Networks. These features are then fused with Haralick features drawn out by means of M-SLIC superpixels segmentation. The combined features are then concatenated with the spectral features of the image and classified using Support Vector Machines. Our experiments were conducted on a VHR satellite image, and the obtained results qualify us to validate the superiority of the suggested scheme (over 16% overall classification accuracy improvement).