Interpretable Learning for Travel Behaviours in Cyber-Physical-Social-Systems

Hao Qi, Peijun Ye
{"title":"Interpretable Learning for Travel Behaviours in Cyber-Physical-Social-Systems","authors":"Hao Qi, Peijun Ye","doi":"10.1109/ANZCC56036.2022.9966975","DOIUrl":null,"url":null,"abstract":"Interpretable learning is important for understanding human behavioral patterns in Cyber-Physical-Social-Systems (CPSS). It facilitates smart decision-makings of intelligent algorithms so that the management of such human-machine hybrid systems can be efficient and optimal. Unlike the big data driven transportation management, this paper introduces a new interpretable learning method using fuzzy logic to semantically extract travel behaviors. Computational experiments based on actual traffic data indicate that our method is able to generate explicit rules, and these rules can be used to predict traffic patterns very well.","PeriodicalId":190548,"journal":{"name":"2022 Australian & New Zealand Control Conference (ANZCC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC56036.2022.9966975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interpretable learning is important for understanding human behavioral patterns in Cyber-Physical-Social-Systems (CPSS). It facilitates smart decision-makings of intelligent algorithms so that the management of such human-machine hybrid systems can be efficient and optimal. Unlike the big data driven transportation management, this paper introduces a new interpretable learning method using fuzzy logic to semantically extract travel behaviors. Computational experiments based on actual traffic data indicate that our method is able to generate explicit rules, and these rules can be used to predict traffic patterns very well.
网络-物理-社会系统中旅行行为的可解释学习
可解释性学习对于理解网络-物理-社会系统(CPSS)中的人类行为模式非常重要。它促进了智能算法的智能决策,使这种人机混合系统的管理能够高效和优化。与大数据驱动的交通管理不同,本文引入了一种新的可解释学习方法,利用模糊逻辑对出行行为进行语义提取。基于实际交通数据的计算实验表明,我们的方法能够生成明确的规则,这些规则可以很好地用于交通模式的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信