{"title":"Quantum Data Reduction with Application to Video Classification","authors":"Kostas Blekos, D. Kosmopoulos","doi":"10.1109/SEC54971.2022.00065","DOIUrl":null,"url":null,"abstract":"We investigate a quantum data reduction technique with application to video classification. A hybrid quantum-classical step performs data reduction on the video dataset generating “representative” distributions for each video class. These distributions are used by a quantum classification algorithm to firstly reduce the size of the videos and then classify the reduced videos to one of $k$ classes. We verify the method using sign videos and demonstrate that the reduced videos contain enough information to successfully classify them using a quantum classification process. The proposed data reduction method showcases a way to alleviate the “data loading” problem of quantum computers for the problem of video classification. Data loading is a huge bottleneck, as there are no known efficient techniques to perform that task without sacrificing many of the benefits of quantum computing.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a quantum data reduction technique with application to video classification. A hybrid quantum-classical step performs data reduction on the video dataset generating “representative” distributions for each video class. These distributions are used by a quantum classification algorithm to firstly reduce the size of the videos and then classify the reduced videos to one of $k$ classes. We verify the method using sign videos and demonstrate that the reduced videos contain enough information to successfully classify them using a quantum classification process. The proposed data reduction method showcases a way to alleviate the “data loading” problem of quantum computers for the problem of video classification. Data loading is a huge bottleneck, as there are no known efficient techniques to perform that task without sacrificing many of the benefits of quantum computing.