Robot Localization in Rough Terrains: Performance Evaluation

E. F. Ersi, John K. Tsotsos
{"title":"Robot Localization in Rough Terrains: Performance Evaluation","authors":"E. F. Ersi, John K. Tsotsos","doi":"10.1109/CRV.2010.39","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to present an overview of two common processes involved in most visual robot localization techniques: data association and robust motion estimation. For each of them, we review some of the available solutions and compare their performance in the context of outdoor robot localization, where the robot is subject to 6-DOF motion. Our experiments with different combinations of data association and motion estimation techniques show the superiority of the Hessian-Affine feature detector and the SIFT feature descriptor for data association, and the Hough Transform for robust motion estimation.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of this paper is to present an overview of two common processes involved in most visual robot localization techniques: data association and robust motion estimation. For each of them, we review some of the available solutions and compare their performance in the context of outdoor robot localization, where the robot is subject to 6-DOF motion. Our experiments with different combinations of data association and motion estimation techniques show the superiority of the Hessian-Affine feature detector and the SIFT feature descriptor for data association, and the Hough Transform for robust motion estimation.
机器人在粗糙地形中的定位:性能评估
本文的目标是概述大多数视觉机器人定位技术中涉及的两个常见过程:数据关联和鲁棒运动估计。对于它们中的每一个,我们回顾了一些可用的解决方案,并比较了它们在户外机器人定位背景下的性能,其中机器人受到6自由度运动的影响。实验表明,hessian -仿射特征检测器和SIFT特征描述符在数据关联和Hough变换在鲁棒运动估计方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信