Predicting Runtime in HPC Environments for an Efficient Use of Computational Resources

Mariza Ferro, Vinícius Klôh, Matheus Gritz, Vitor Sá, B. Schulze
{"title":"Predicting Runtime in HPC Environments for an Efficient Use of Computational Resources","authors":"Mariza Ferro, Vinícius Klôh, Matheus Gritz, Vitor Sá, B. Schulze","doi":"10.5753/wscad.2021.18513","DOIUrl":null,"url":null,"abstract":"Understanding the computational impact of scientific applications on computational architectures through runtime should guide the use of computational resources in high-performance computing systems. In this work, we propose an analysis of Machine Learning (ML) algorithms to gather knowledge about the performance of these applications through hardware events and derived performance metrics. Nine NAS benchmarks were executed and the hardware events were collected. These experimental results were used to train a Neural Network, a Decision Tree Regressor and a Linear Regression focusing on predicting the runtime of scientific applications according to the performance metrics.","PeriodicalId":410043,"journal":{"name":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2021.18513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Understanding the computational impact of scientific applications on computational architectures through runtime should guide the use of computational resources in high-performance computing systems. In this work, we propose an analysis of Machine Learning (ML) algorithms to gather knowledge about the performance of these applications through hardware events and derived performance metrics. Nine NAS benchmarks were executed and the hardware events were collected. These experimental results were used to train a Neural Network, a Decision Tree Regressor and a Linear Regression focusing on predicting the runtime of scientific applications according to the performance metrics.
预测HPC环境下的运行时以实现计算资源的有效利用
通过运行时了解科学应用程序对计算体系结构的计算影响,可以指导在高性能计算系统中使用计算资源。在这项工作中,我们建议对机器学习(ML)算法进行分析,以通过硬件事件和派生的性能指标收集有关这些应用程序性能的知识。执行了9个NAS基准测试,并收集了硬件事件。这些实验结果用于训练神经网络、决策树回归器和线性回归器,重点是根据性能指标预测科学应用程序的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信