Multilingual Sentiment Analysis for a Swiss Gig

Ela Pustulka-Hunt, T. Hanne, Eliane Blumer, Manuel Frieder
{"title":"Multilingual Sentiment Analysis for a Swiss Gig","authors":"Ela Pustulka-Hunt, T. Hanne, Eliane Blumer, Manuel Frieder","doi":"10.1109/iscbi.2018.00028","DOIUrl":null,"url":null,"abstract":"We are developing a multilingual sentiment analysis solution for a Swiss human resource company working in the gig sector. To examine the feasibility of using machine learning in this context, we carried out three sentiment assignment experiments. As test data we use 963 hand annotated comments made by workers and their employers. Our baseline, machine learning (ML) on Twitter, had an accuracy of 0.77 with the Matthews correlation coefficient (MCC) of 0.32. A hybrid solution, Semantria from Lexalytics, had an accuracy of 0.8 with MCC of 0.42, while a tenfold cross-validation on the gig data yielded the accuracy of 0.87, F1 score 0.91, and MCC 0.65. Our solution did not require language assignment or stemming and used standard ML software. This shows that with more training data and some feature engineering, an industrial strength solution to this problem should be possible.","PeriodicalId":153800,"journal":{"name":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iscbi.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We are developing a multilingual sentiment analysis solution for a Swiss human resource company working in the gig sector. To examine the feasibility of using machine learning in this context, we carried out three sentiment assignment experiments. As test data we use 963 hand annotated comments made by workers and their employers. Our baseline, machine learning (ML) on Twitter, had an accuracy of 0.77 with the Matthews correlation coefficient (MCC) of 0.32. A hybrid solution, Semantria from Lexalytics, had an accuracy of 0.8 with MCC of 0.42, while a tenfold cross-validation on the gig data yielded the accuracy of 0.87, F1 score 0.91, and MCC 0.65. Our solution did not require language assignment or stemming and used standard ML software. This shows that with more training data and some feature engineering, an industrial strength solution to this problem should be possible.
瑞士演出的多语言情感分析
我们正在为一家从事零工行业的瑞士人力资源公司开发一个多语言情感分析解决方案。为了检验在这种情况下使用机器学习的可行性,我们进行了三个情感分配实验。作为测试数据,我们使用963名工人及其雇主的手写注释评论。我们的基线,推特上的机器学习(ML),准确率为0.77,马修斯相关系数(MCC)为0.32。Lexalytics的混合解决方案Semantria的准确率为0.8,MCC为0.42,而对gig数据进行十倍交叉验证的准确率为0.87,F1得分为0.91,MCC为0.65。我们的解决方案不需要语言分配或词干提取,并使用标准的ML软件。这表明,有了更多的训练数据和一些特征工程,这个问题的工业强度解决方案应该是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信