{"title":"자동차 시트들에 적용되는 럼버 서포트의 와이어 두께별 강도 해석에 관한 연구","authors":"Kim Key Sun, Chanwoo Cho, Jin Kim, J. Cho","doi":"10.17958/ksmt.21.5.201910.834","DOIUrl":null,"url":null,"abstract":"In this study, the structural analysis was carried out according to the structure of lumber support. For the optimal design of the automotive lumber support, It was examined which one was most stable among three models A, B, and C. As the result of structural analysis, all three models showed the greatest deformations at the wire portion of the lumber support, and model A showed less equivalent stress and deformation compared with models B and C. As model A showed the lowest equivalent stress and deformation among all models, model A was shown to be the model with the excellent strength. This analysis established the stable design by comparing models A, B and C. Also, It is thought that this study result can be highly utilized at the seat design of real automobile.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.21.5.201910.834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the structural analysis was carried out according to the structure of lumber support. For the optimal design of the automotive lumber support, It was examined which one was most stable among three models A, B, and C. As the result of structural analysis, all three models showed the greatest deformations at the wire portion of the lumber support, and model A showed less equivalent stress and deformation compared with models B and C. As model A showed the lowest equivalent stress and deformation among all models, model A was shown to be the model with the excellent strength. This analysis established the stable design by comparing models A, B and C. Also, It is thought that this study result can be highly utilized at the seat design of real automobile.