Multiview from micro-lens image of multi-focused plenoptic camera

Daniele Bonatto, Sarah Fachada, T. Senoh, Guotai Jiang, Xin Jin, G. Lafruit, Mehrdad Teratani
{"title":"Multiview from micro-lens image of multi-focused plenoptic camera","authors":"Daniele Bonatto, Sarah Fachada, T. Senoh, Guotai Jiang, Xin Jin, G. Lafruit, Mehrdad Teratani","doi":"10.1109/IC3D53758.2021.9687243","DOIUrl":null,"url":null,"abstract":"Multi-focused Plenoptic cameras (Plenoptic 2.0) allow the acquisition of the Light-Field of a scene. However, extracting a novel view from the resulting Micro-Lens Array (MLA) image poses several challenges: micro-lenses calibration, noise reduction, patch size (depth) estimation to convert micro-lens image to multi-view images. We propose a novel method to easily find important micro-lenses parameters, avoid the unreliable luminance area, estimate the depth map, and extract sub-aperture images (multiview) for the single- and multi-focused Plenoptic 2.0 camera. Our results demonstrate significant improvement in quality and reduction in computational time compared to the state-of-the-art conversion tool Reference Lenslet content Convertor from MLA image to multiview images.","PeriodicalId":382937,"journal":{"name":"2021 International Conference on 3D Immersion (IC3D)","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D53758.2021.9687243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multi-focused Plenoptic cameras (Plenoptic 2.0) allow the acquisition of the Light-Field of a scene. However, extracting a novel view from the resulting Micro-Lens Array (MLA) image poses several challenges: micro-lenses calibration, noise reduction, patch size (depth) estimation to convert micro-lens image to multi-view images. We propose a novel method to easily find important micro-lenses parameters, avoid the unreliable luminance area, estimate the depth map, and extract sub-aperture images (multiview) for the single- and multi-focused Plenoptic 2.0 camera. Our results demonstrate significant improvement in quality and reduction in computational time compared to the state-of-the-art conversion tool Reference Lenslet content Convertor from MLA image to multiview images.
多聚焦全光相机微镜头图像的多视角
多焦点全光相机(Plenoptic 2.0)允许获取场景的光场。然而,从生成的微透镜阵列(MLA)图像中提取新视图存在几个挑战:微透镜校准、降噪、斑块尺寸(深度)估计以将微透镜图像转换为多视图图像。针对单焦和多焦Plenoptic 2.0相机,提出了一种新的方法,可以方便地找到重要的微镜头参数,避免不可靠的亮度区域,估计深度图,提取子孔径图像(多视图)。我们的结果表明,与最先进的转换工具Reference Lenslet content converter相比,从MLA图像到多视图图像的质量有了显著提高,计算时间也减少了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信