IntegrityMR: Exploring Result Integrity Assurance Solutions for Big Data Computing Applications

Yongzhi Wang, Jinpeng Wei, M. Srivatsa, Yucong Duan, Wencai Du
{"title":"IntegrityMR: Exploring Result Integrity Assurance Solutions for Big Data Computing Applications","authors":"Yongzhi Wang, Jinpeng Wei, M. Srivatsa, Yucong Duan, Wencai Du","doi":"10.2991/ijndc.2016.4.2.5","DOIUrl":null,"url":null,"abstract":"Large-scale adoption of MapReduce applications on public clouds is hindered by the lack of trust on the participating virtual machines deployed on the public cloud. In this paper, we propose IntegrityMR, a multi-public clouds architecture-based solution, which performs the MapReduce-based result integrity check techniques at two alternative layers: the task layer and the application layer. Our experimental results show that solutions in both layers offer a high result integrity but non-negligible performance overheads.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.2016.4.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large-scale adoption of MapReduce applications on public clouds is hindered by the lack of trust on the participating virtual machines deployed on the public cloud. In this paper, we propose IntegrityMR, a multi-public clouds architecture-based solution, which performs the MapReduce-based result integrity check techniques at two alternative layers: the task layer and the application layer. Our experimental results show that solutions in both layers offer a high result integrity but non-negligible performance overheads.
IntegrityMR:探索大数据计算应用的结果完整性保证解决方案
MapReduce应用程序在公共云上的大规模采用受到了对部署在公共云上的参与虚拟机缺乏信任的阻碍。在本文中,我们提出了一种基于多公共云架构的解决方案IntegrityMR,它在任务层和应用层两个可选层执行基于mapreduce的结果完整性检查技术。我们的实验结果表明,两层的解决方案都提供了高的结果完整性,但不可忽略的性能开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信