Learning the Classification of Traffic Accident Types

Tibebe Beshah, D. Ejigu, P. Krömer, V. Snás̃el, J. Platoš, A. Abraham
{"title":"Learning the Classification of Traffic Accident Types","authors":"Tibebe Beshah, D. Ejigu, P. Krömer, V. Snás̃el, J. Platoš, A. Abraham","doi":"10.1109/INCOS.2012.75","DOIUrl":null,"url":null,"abstract":"This paper presents an application of evolutionary fuzzy classifier design to a road accident data analysis. A fuzzy classifier evolved by the genetic programming was used to learn the labeling of data in a real world road accident data set. The symbolic classifier was inspected in order to select important features and the relations among them. Selected features provide a feedback for traffic management authorities that can exploit the knowledge to improve road safety and mitigate the severity of traffic accidents.","PeriodicalId":287478,"journal":{"name":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCOS.2012.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents an application of evolutionary fuzzy classifier design to a road accident data analysis. A fuzzy classifier evolved by the genetic programming was used to learn the labeling of data in a real world road accident data set. The symbolic classifier was inspected in order to select important features and the relations among them. Selected features provide a feedback for traffic management authorities that can exploit the knowledge to improve road safety and mitigate the severity of traffic accidents.
学习交通事故类型的分类
提出了一种基于进化模糊分类器的道路交通事故数据分析方法。利用遗传规划进化出的模糊分类器,对实际道路交通事故数据集进行标注学习。对符号分类器进行了检验,以选择重要特征及其之间的关系。选定的功能可以为交通管理部门提供反馈,从而可以利用这些知识来改善道路安全和减轻交通事故的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信