Adaptive Binary Whale Optimization Algorithm for Computation Offloading Optimization in Mobile Edge Computing

Jie Li, Wen Zhang, Pu Cheng, Yujing Wang, Xiaoyu Du
{"title":"Adaptive Binary Whale Optimization Algorithm for Computation Offloading Optimization in Mobile Edge Computing","authors":"Jie Li, Wen Zhang, Pu Cheng, Yujing Wang, Xiaoyu Du","doi":"10.1109/ICIST55546.2022.9926934","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) is an emerging technology that uses wireless networks to provide resource services for resource-constrained mobile devices. To address the problems of mobile device the percentage of offloading and system utility, the maximum the percentage of offloading and a system utility model are constructed in this paper. This model redefines the portion of task offloading combined with the task offloading scenario, making the offloading task more inclined to important user tasks and improving the quality of the task offloading. At the same time, an adaptive binary whale resource allocation (ABWRA) scheme is proposed to optimize the task offloading strategy and channel allocation strategy. In the evaluation, this paper simulates the computation offloading of ABWRA and existing works in the same scenario. Simulation results show that the proposed ABWRA scheme improves the system utility by 5.4% and the unloading rate by 9.8% compared with the BWRA algorithm.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile edge computing (MEC) is an emerging technology that uses wireless networks to provide resource services for resource-constrained mobile devices. To address the problems of mobile device the percentage of offloading and system utility, the maximum the percentage of offloading and a system utility model are constructed in this paper. This model redefines the portion of task offloading combined with the task offloading scenario, making the offloading task more inclined to important user tasks and improving the quality of the task offloading. At the same time, an adaptive binary whale resource allocation (ABWRA) scheme is proposed to optimize the task offloading strategy and channel allocation strategy. In the evaluation, this paper simulates the computation offloading of ABWRA and existing works in the same scenario. Simulation results show that the proposed ABWRA scheme improves the system utility by 5.4% and the unloading rate by 9.8% compared with the BWRA algorithm.
移动边缘计算中计算卸载优化的自适应二元鲸优化算法
移动边缘计算(MEC)是一种利用无线网络为资源受限的移动设备提供资源服务的新兴技术。为解决移动设备卸载百分比和系统效用问题,本文构建了最大卸载百分比和系统实用新型。该模型结合任务卸载场景重新定义了任务卸载的部分,使卸载任务更倾向于重要的用户任务,提高了任务卸载的质量。同时,提出了一种自适应二进制鲸鱼资源分配(ABWRA)方案,对任务卸载策略和信道分配策略进行优化。在评估中,本文模拟了ABWRA和现有工程在相同场景下的计算卸载。仿真结果表明,与BWRA算法相比,ABWRA算法的系统利用率提高了5.4%,卸载率提高了9.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信